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Abstract 
In the late forties, Stanisław Jaśkowski published his well-know papers on the discursive 
sentential calculus, D2. He provided a definition of it by an interpretation in the language 
of S5 of Lewis. However, it is the sisyphean labour to transform any discursive formula 
into its modal counterpart. The inconvenience results in the search for a new simple tool 
we could use trying to answer the question whether a discursive formula is valid in D2 or 
it is not. We intend to introduce a more efficient method that makes the translation 
procedure redundant and present a direct semantics and (Signed and Unsigned) Labelled 
Tableaux for D2. 

 
 
 
 

1. Introduction 
 

Discursive or Discussive Logic, introduced by Jaśkowski and further promoted by Kotas, 
Dubikajtis and the others, has already found its way in contemporary logic as a first formal 
approach to paraconsistency. Jaśkowski fully recognized the need for logic to be flexible 
enough to depict some of “weaknesses” of the natural language such as vagueness and 
imprecision. It sometimes happens in science, not to mention everyday life, that we use terms, 
which are more or less vague or imprecise. Even in literature we can come across a good 
example of how dangerous it always is to reason from the terms: 
 

“I had - said he [Sherlock Holms] – come to an entirely erroneous conclusion… 
The presence of the gypsies, and the use of the word band, which was used by the 
poor girl, no doubt, to explain the appearance which she had caught a horrid 
glimpse of by the light of her match, were sufficient to put me upon an entirely 
wrong scent.”1 

 
Jaśkowki realized vagueness of a term could lead to seeming contradictions. It can easily 

be noticed, in our experience, that we generally fall into them while discussing on a topic. 
Since we cannot safely assume that imprecise terms and seeming contradictions will never 
occur among participants in the discussion our formal language should allow the 
contradictions to be present. Unfortunately, classical and almost all of the nonclassical logics 
he considered in [6] are not too helpful to gain a real insight into their nature. Jaśkowski 
decided to apply a translation procedure instead and the system S5 of Lewis turned out to be 
very useful for that purpose.   

To characterize the translation, we will firstly apply a standard sentential language of S5, 
LgS5 for short, whose primitive vocabulary includes four classical connectives, i.e.  ∼ , ∨ , ∧ , 
→, and two modal symbols, i.e. M (possibility), L (necessity). The set of all propositional 
variables will be denoted by var and the capital letters {P, Q, R,…} stand for (schemata of) 
formulas. The language LgD2 differs from LgS5 in many respects. Not only do the modal 

                                                
1 Sir Arthur Conan Doyle, The Speckled Band, in: The Best of Sherlock Holmes, Wordsworth Classics, 
Hertfordshire 1998, p.119. 



connectives disappear, but also the classical conjunction, implication and equivalence are 
absent from LgD2. They are replaced by their discursive counterparts for purely technical and 
philosophical reason.2  

Providing a definition of  D2, we compare the languages of D2 and S5   
 

• LgD2 = < ForD2, ∼ , ∨ , ∧ d, →d >;  
• LgS5 = < ForS5, ∼ , ∨ , ∧ , →, M, L >, 

 
define a function  f :  ForD2 ⇒ ForS5 as follows: 
 

(i) f (p) = p if p∈ var; 
(ii) f (∼  P) = ∼  f (P); 
(iii) f (P ∨  Q) =  f (P) ∨  f (Q); 
(iv) f (P ∧ d Q) =  f (P) ∧  M f (Q); 
(v) f (P →d Q) =  M f (P) → f (Q)3 

 
and finally, introduce the key definition: 
 

(vi)  For every formula P∈  ForD2, P ∈  D2  iff   M f (P) ∈  S5.  
 
Although Jaśkowski gave a general description of how to transform any discursive formula 
into its modal equivalent, the translation procedure was a little unhandy to operate in practice. 
To illustrate it, one can show, as a simple example, that the formula (∼  P ∧ d ∼  (P →d Q)) →d  
(Q →d (P ∧ d ∼  P)) is valid in D2. In fact, we are made to pass through the indicated translation 
and show the formula  M (M (∼  P ∧  M ∼  (M P → Q)) →  (M Q → (P ∧  M ∼  P))) to be valid in 
S5.  The inconvenience results in the search for a new tool we could apply trying to avoid 
using the translation rules. 
 
 

2. Kripke Semantics for D2 
 
We present here a direct semantics for D2 which, unlike the one in [8], is suggested by 
Kripke-type semantics. As, in [3], we have already used it while introducing a new 
axiomatization for D2 we limit ourselves to only recapitulating its main points.   

By Kripke frame (D2-frame) we mean a pair <W, R>, where W is a non-empty set (of 
points, possible worlds) and R is a binary relation on W. Furthermore, R is subject to the 
conditions: 
 

(i) x R x, for every x ∈  W; 
(ii) if  x R y, then y R x, for every x, y ∈  W; 
(iii) if  x R y and y R z, then x R z, for every x, y, z ∈  W. 

 
The conditions define R as being the equivalence relation on W.  

A Kripke model M (D2-model) is a triple <W, R, v>, where v is a mapping from 
propositional variables to sets of worlds (more formally, v: var ⇒ 2W ). The satisfaction 
relation I=m  is defined: 
 

                                                
2  For details, see [6], [8], [1] and [2]. 
3 P ↔d Q = (P →d Q) ∧ d (Q →d P).    



(var)  x I=m  p    iff  x ∈  v(p); 
(∼ )  x I=m ∼  P    iff  x I≠ m P; 
(∨ )  x I=m P ∨  Q  iff  x I=m P  or  x I=m Q; 
(∧ d)  x I=m P ∧ d Q  iff  x I=m  P  and there exists some y ∈  W, with x Ry and y I=m Q; 
(→d)   x I=m  P →d Q iff  if there exists some y ∈  W, with x Ry and y I=m P then x I=m Q. 
 
Next we define the notion of a valid sentence: 
 
 I=M P   iff   for any model M, any x ∈  W, there exists y ∈  W such that: x R y and yI=m P. 
 
For a convenient notation, we will henceforth write: 
 
(Ab)  x I=m P iff   there exists y ∈  W such that x R y and y I=m P. 
 
Consequently, we obtain: 
 
 I=M P   iff   for any model M and any x ∈  W, x I=m P. 
 
The semantics we adopted is free from the translation rules. It enables us to take a step in the 
right, for our purpose, direction.   
 
 

3. Signed Labelled Tableaux for D2 
 
We assume familiarity with tableau methods and confine ourselves to recalling the relevant 
terminology (see [4] or [5] for details). In our language, from now on, we will use signed 
labelled formulas such as σ :: T P (or σ :: F P), where σ is a label and T P (or F P) is a signed 
formula (i.e. a formula prefixed with a “T” or “F”). Intuitively, σ :: T  P is read as “P is true at 
the world σ” and σ :: F P as “P is false at the world σ”. By label, we understand a nonempty 
sequence of natural numbers separated by periods. The length of a label σ is the number of 
periods it contains plus one (we denote the length of σ by σ*). A label τ is a simple 
(immediate) extension of a label σ if τ = σ.n (and n∈ N). A label τ is an extension of a label σ 
if τ = σ.n1.n2.n3. … .nk where k ≥ 1 with each ni ≥ 1. We call ρ root label and always 
presuppose that ρ = 1. It follows that the set of labels is strongly generated. A tableau for a 
labelled formula P is a downward rooted tree, where each of the nodes contains a signed 
labelled formula, constructed using the branch extension rules to be defined below. 
 
Non-discursive rules: 
 As D2 contains the set of all disjunctio-negational theses of classical propositional logic the 
rules for disjunction and negation are identical to the ones used in classical case.     
 

σ :: T P ∨  Q   σ :: F P ∨  Q (T ∨ ) 
σ :: T P σ :: T Q 

(F ∨ )
     σ :: F P 

   σ :: F Q 
 

  σ :: T ∼  P    σ :: F ∼  P (T ∼ ) 
  σ :: F P  

(F ∼ )
  σ :: T P 

 
The rules (F ∨ ), (F ∼ ) and (T ∼ ) are linear, but (T ∨ ) is branching. 



 
 
Discursive rules: 
 The rules in question are also divided into two types: linear and branching, but they do not 
imitate the classical rules in a simple way. The rules for discursive conjunction are the 
following: 
 

σ :: T  P ∧ d Q  σ :: F P ∧ d Q 
σ :: T  P   σ :: F P σ. n :: F Q 

(T ∧ d) 

σ. n :: T  Q  

(F ∧ d) 

 
 
where for (T∧ d) σ. n is a label that is new to the branch and for (F∧ d) σ. n is a label that has 
been already used in the branch. 

The rules for discursive implication are as follows: 
 

σ :: P →d Q σ :: F P →d Q 
σ. n :: F P σ :: T Q σ. n :: T  P 

(T →d) 

 

(F →d)

σ :: F Q 
 

where for (T→d) σ. n has been already used in the branch and for (F→d) σ. n is a label that is 
new to the branch. 
 
Closure rule: 
 A branch of a tableau is closed if we can apply the rule: 
 

  σ :: T P 
  σ :: F P 

(C) 

  closed 
 
Otherwise the branch is open. A tableau is closed if all of its branches are closed, otherwise 
the tableau is open.  

We return, for a while, to the initial Jaśkowski’s ideas before introducing the last rule. 
Jaśkowski suggested treating a discussion as a set of opinions given by participants. There 
follows an idea to precede each opinion by the provision: for a certain admissible meaning of 
the terms used. It found expression in the definition (vi) and (Ab) – see above, and should also 
be present in our system. The idea is reflected in an additional rule.   
 
Special rule:  
 

  ρ :: F P (S) 
  σ. n :: F  P 

 
where ρ is a root label and σ. n is a label that has been already used in the branch. The 
application of the rule is always limited to root labels. 

Let P be a formula. By a tableau proof of P we mean a closed tableau with 1:: F P.    
 Now, we give a few examples to illustrate how the rules we defined work.  
  
Example 1. Closed tableau for the law of the excluded middle.  
 
 



(a) 1 :: F P ∨  ∼  P (start) 
(b) 1 :: F P (F ∨ ),(a) 
(c) 1 :: F ∼  P (F ∨ ),(a) 
(d) 1 :: T P  (F ∼ ),(c) 

 closed (C),(b),(d)
 
The notation (F ∨ ),(a) indicates that the rule (F ∨ ) was applied to the line (a).  
 

Example 2. Closed tableau for the principle of contradiction. 
   

(a) 1 :: F ∼  (P ∧ d ∼  P) (start) 
(b) 1 :: T P ∧ d ∼  P (F ∼ ),(a) 
(c) 1 :: T P (T ∧ d),(b) 
(d) 1.1 :: T ∼  P  (T ∧ d),(b) 
(e) 1.1 :: F P (T ∼ ),(d) 
(f) 1.1 :: F ∼  (P ∧ d ∼  P) (S),(a) 
(g) 1.1 :: T P ∧ d ∼  P (F ∼ ),(f) 
(h) 1.1 :: T P (T ∧ d),(g) 
(i) 1.1.1 :: T ∼  P (T ∧ d),(g) 

 closed (C),(e),(h)
 
Let us pay attention to the line (f) where we used the rule (S) to close the tableau.   
 
 Example 3. Closed tableau for the Clavius’ law. 
 

(a) 1 :: F (P →d ∼  P) →d ∼  P (start) 
(b) 1.1 :: T  P →d ∼  P (F →d),(a) 
(c) 1 :: F ∼  P (F →d),(a) 
(d) 1 :: T P (F ∼ ),(c) 

1st branch 
(e) 1.1 :: F P (T →d),(b) 
(f) 1.1 :: F (P →d ∼  P) →d ∼  P (S),(a) 
(g) 1.1.1 :: T  P →d ∼  P (F →d),(f) 
(h) 1.1 F ∼  P (F →d),(f) 
(i) 1.1 :: T P (F ∼ ),(h) 
 Closed (C),(e),(i) 

2nd branch 
(e)’ 1.1 :: T ∼  P (T →d),(b) 
(f)’ 1.1 :: F P (F ∼ ),(e)’ 
(g)’ 1.1 :: F (P →d ∼  P) →d ∼  P (S),(a) 
(h)’ 1.1.2 :: T P →d ∼  P (F →d),(g)’
(i)’ 1.1 :: F ∼  P (F →d),(g)’
(j)’ 1.1 :: T P (F ∼ ),(i)’ 

 Closed (C),(f)’,(j)’
 
In our example, we applied one of the branching rules, i.e. (T →d), to the line (b) and used the 
notions 1st branch and 2nd branch to indicate that the (new) branches were opened. 
 



4. Simplified Tableaux for D2 
 

The accessibility relation we should define to capture the conditions on D2-frames is 
reflexive, symmetric and transitive. It implies that any label is accessible from any other and 
we might well regard a label as a natural number instead of treating it as a (nonempty) 
sequence of positive integers separated by periods. It simplifies some of the technical details. 
The main merit of the modification consists in making tableau proofs less complicated. The 
modified rules take the form: 
 
Discursive conjunction: 
 

σ :: T  P ∧ d Q  σ :: F P ∧ d Q 
σ :: T  P   σ :: F P  σ’ :: F Q

(T ∧ d) 

τ :: T  Q  

(F ∧ d) 

(for σ’ used) 
         (for τ new)   

 
Discursive implication: 

 
σ :: P →d Q σ :: F P →d Q 

σ’ :: F P σ :: T Q τ:: T  P 
(T →d) 

(for σ’ used) 

(F →d)

σ :: F Q 
     (for τ new) 

 
Special rule:  
 

  ρ :: F P (S) 
  σ’ :: F  P 

 (for σ’ used) 
  
Notice that we impose the same condition on the (S) rule as described in Section 3.  
 Here is an example of a tableau proof, in the modified system, of  (∼ P →d  P) →d P. 
 

Example 4. Closed tableau for the second Clavius’ law. 
 

(a) 1 :: F (∼ P →d  P) →d P (start) 
(b) 2 :: T  ∼ P →d  P (F →d),(a) 
(c) 1 :: F  P (F →d),(a) 

1st branch 
(d) 1 :: F ∼ P (T →d),(b) 
(e) 1 :: T  P (F ∼ ),(d) 

 Closed (C),(c),(e) 
2nd branch 
(d)’ 2 :: T  P (T →d),(b) 
(e)’ 2 :: F (∼ P →d  P) →d P (S),(a) 
(f)’ 3 :: T ∼ P →d  P (F →d),(e)’ 
(g)’ 2 :: F P (F →d),(e)’ 

 Closed (C),(d)’,(g)’
 
In the next example, we will generate an infinite tableau for a “notorious” law of CPC. 



 
Example 5. Infinite tableau for the Duns Scotus thesis 

 
(a) 1 :: F P →d (∼  P →d Q) (start) 
(b) 2 :: T P       (F →d),(a) 
(c) 1 :: F ∼  P →d Q (F →d),(a) 
(d) 3 :: T ∼  P (F →d),(c) 
(e) 1 :: F Q  (F →d),(c) 
(f) 3 :: F P (T ∼ ),(d) 
(g) 2 :: F P →d (∼  P →d Q) (S),(a) 
(h) 4 :: T P (F →d),(g) 
(i) 2 :: F ∼  P →d Q (F →d),(g) 
(j) 5 :: T ∼  P (F →d),(i) 
(k) 2 :: F Q  (F →d),(i) 
(l) 5 :: F P (T ∼ ),(j) 

(m) 3 :: F P →d (∼  P →d Q) (S),(a) 
(n) 6 :: T P (F →d),(m)
(o) 3 :: F ∼  P →d Q (F →d),(m)
(p) 7 :: T ∼  P (F →d),(o) 
(r) 3 :: F Q  (F →d),(o) 
(s) 7 :: F P (T ∼ ),(p) 
(t) 4 :: F P →d (∼  P →d Q) (S),(a) 
 :  
 :  

 
The procedure goes on ad infinitum.  
 
 

5. Unsigned Labelled Tableaux for D2  
 
In Sections 3 and 4, we introduced Signed Labelled Tableaux for D2. We currently focus on a 
slightly different attitude to the problem in question and give a new set of tableau rules for the 
discursive logic. The main idea to get rid of the translation procedure is still playing a leading 
part, but we express it in a different way making some major changes in the formal language. 
We will work with labelled formulas such as σ :: P, where σ is a label (being viewed as a 
natural number) and P is a formula. The notation σ:: P intuitively means “P holds in world σ”.  

D2-tableau is a tree of labelled formulas with root label ρ (we always assume that ρ = 1) 
and all the nodes of a tree are obtained by the rules schematically described in Table 1. A 
branch of D2-tableau is closed if it contains ⊥ , otherwise it is open. A  D2-tableau is closed if 
all of the branches it contains are closed, otherwise it is open. By a tableau proof of P we 
mean a closed tableau with 1:: ∼  P.     
  Observe that the rules (∼  ∨ ), (∼  ∧ d) and (→d) are branching just like (T ∨ ), (F ∧ d) and 
(T→d) given in Sections 3 and 4. The others are linear. We restrict the usage of the (S) rule to 
the root label ρ. 
 
 
 
 
 



 
 

 
Classical rules: 

     
(∨ ) σ :: P ∨  Q  (∼  ∨ )    σ :: ∼  (P ∨  Q) 
 σ :: P σ :: Q     σ :: ∼  P  
      σ :: ∼  Q 
     
    (∼  ∼ )   σ :: ∼  ∼  P 
      σ :: P  
     

Discursive rules: 
     
(∧ d)   σ :: P ∧ d Q  (∼  ∧ d) σ :: ∼  (P ∧ d Q)  
   σ :: P       σ :: ∼  P  σ’ :: ∼  Q 
   τ :: Q  (for τ new)        (for σ’used) 
     
(→d) σ :: P →d Q  (∼  →d) σ :: ∼  (P →d Q)  
 σ’ :: ∼  P σ :: Q     τ :: P 
   (for σ’used)     σ :: ∼  Q

           (for τ new) 

     
Closing rule: Special rule: 

     
( C)   σ :: P  (S)  ρ  :: ∼  P        (for root label ρ) 
   σ :: ∼  P    σ ’ :: ∼  P 
 ⊥      

 (for σ’used) 

     
 

Table 1. Unsigned Labelled Tableaux for D2 
 
 

Here is an example of a tableau proof of  ∼  ∼  P →d  P. 
 

Example 6. Closed tableau for the law of double negation. 
 

(a) 1 :: ∼  (∼∼  P →d ∼  P) (start) 
(b) 2 :: ∼∼  P       (∼  →d),(a) 
(c) 1 :: ∼  P  (∼  →d),(a) 
(d) 2 :: P (∼∼ ),(b) 
(e) 2 :: ∼  (∼∼  P →d ∼  P) (S),(a) 
(f) 3 :: ∼∼  P (∼  →d),(e) 
(g) 2 :: ∼  P (∼  →d),(e) 
(i) ⊥  (d),(g) 

 



 
6. Conclusions 

 
We have provided a method that allows to eliminate the translation procedure from D2. The 
method we depicted is  friendly to use. Since we concentrated our attention on the practical 
use of the system rather than its metalogical properties the fundamental theorems were not 
included in the present text. Instead, we gave some examples to illustrate how the method 
works in practice. 
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