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About the guide

Logic in the form it acquired at the beginning of the twenty century is science on
the formal structure of deductive theories, notably mathematical theories presented
in the form of axiom systems. The key concept in terms of which such a structure is
defined is that of logical consequence. In the most concise way, logic might be then
defined as the theory of consequence relation.

A widely spread cliché that logic sets criteria of “logical thinking” reflects rather
naive idea that rigorous and precise thinking is matter of knowing formal principles
of reasoning rather than having a deep enough grasp of its subject. But this is not
so. We prize one for “logical thinking” if, in our opinion, one controls all subtle-
ties of the discourse, one is aware of various significant but easy to be overlooked
aspects of the discussed topic, one evaluates correctly the hierarchy and relevance
of issues being examined, etc., etc. All these criteria of “logical thinking” concern
the matter of reasoning rather than its form.

And yet, in a way, logic concerns “logical thinking” in the naive sense of the word
for it provides guidance and tools needed for grasping the formal structure of any
rational discourse whatsoever. Needless to say thus, as long as the formal structure
of a discourse remains unclear, the question of which of the propositions of the
analyzed discourse follow from which may not have a conclusive answer. One of
the key issues we are going to discuss in this text is how and under which condi-
tions the principles and techniques of formalized (mathematical) discourse can be
applied in informal reasoning. Thus we are going to depart from the idea that the
chief domain of application of logic is mathematics and examine relevance of logi-
cal concepts and techniques for analysis of a discourse of any kind whatsoever.

The ideas presented and discussed in this guide were presented in an extended form
in the textbook Lectures on logic with elements of the theory of knowledge
(Scholar, Warsaw, 2003) at present available only in Polish (its original title is
Wykiady z logiki z elementami teorii wiedzy). Its English version is being prepared.



1. The concept of set

1.1. The Common-Sense vs. Formal Idea of a Set

The common-sense idea of set might seem to be simple and unproblematic. In fact,
it is not. At the same time, unless we do not mind committing the fallacy known as
ignotum per ignotum (defining “unknown by unknown™), no definition of a set is
available. For instance, to explain that “a set is a collection of objects” is to explain
nothing. The idea of a collection is not a bit clearer than that of a set.

The right way to handle the problem is to explicate what is a set by suitably se-
lected meaning postulates (axioms). We are not going to present set theory as an
axiom system, however. Instead, we shall adopt the following approach. We shall
clarify the intuitive meaning of the term “set” with the help of selected “principles”
meant to describe the most characteristic properties of sets. We prefer to use the
term “principle” rather than “axiom™ for in a specific axiom system they might be
theorems (i.e. logical consequences of axiom) rather than axioms.

1.2. The Extensionality Principle

Consider the following question. Let S be the set of all Warsaw streets and let D be
the set of all Warsaw districts. Is S = D? Warsaw can be viewed both as a “unit”
combined of different streets a “unit” combined of different districts. This suggests
that S = D. And yet S # D, in virtue of the following commonly accepted principle
(iff abbreviates if and only if):

1.2.1. EXTENSIONALITY PRINCIPLE (INFORMAL VERSION): Sets 4, B
are the same iff they consist of the same elements.

Indeed, the elements of S are streets, and those of D are districts. No street is a dis-
trict and no district is a street. So S and D consist of different elements and thus
they are different.

Of course, Warsaw is a “unit” formed by its various parts. The term “unit” that
appears in this statement should not be interpreted as “set,” however. Rather it
should be interpreted as a system, meant to be a set whose elements satisfy certain
either implicitly accepted or explicitly stated conditions.



1.3. The Formalized Version of Extensionality Principle

We have stated Extensionality Principle in a rather loose language. Mathematicians
apply informal language fairly often but always with considerable cautious. The
more sophisticated is a mathematical proposition the more likely is that its loose
version might not be clear enough.

A rigorous version of Extensionality Principle is the following (x € 4 is the com-
monly accepted notation for x is an element of A):

1.3.1. EXTENSIONALITY PRINCIPLE (RIGOROUS VERSION): Let A and
B be sets. Then A = B iff for every object x, x € A iff x € B.

Replace iff by = and replace for every by V. Assume that variables 4, B, C, ... repre-
sent sets while variables x, y, z, ... represent any objects whatsoever. Now, the Ex-
tensionality Principle might be stated as follows:

1.3.2. EXTENSIONALITY PRINCIPLE (FORMALIZED VERSION):
A=B=Vx(xeA=x € B)

Some more notations will be useful. In order to state that x is a set, we shall write
set(x). Incidentally, this notation sets a general pattern we shall apply on numer-
ous occasions. Thus e.g. mathematician(x) will serve as formalized counterpart
of x is a mathematician, brave-soldier(x) will serve as formalized notation
for x is a brave soldier, etc.

1.4. Logical Notation

Rather than introducing more logical notation when this is needed, let us list all
logical symbols we are going to use. They are the following (expressions in paren-
theses indicate the intended meaning of the symbols):

1.4.1. LIST OF LOGICAL TERMS AND THEIR SYMBOLS:

Connectives: negation — (not), implication — (if...then), conjunction A
(and), disjunction v (or), equivalence = (if and only if)

Quantifiers (x stands for an arbitrary variable): universal Vx (for all x),
existential 3x (there is x such that)

Identity predicate = (is the same as)

Logical terms (both in their symbolic and verbal form) are often referred to as logi-
cal “constants.” The terms listed above are known as classical logical constants.



Keep in mind that the term “classical logical constant™ applies to the terms listed in
1.4.1 only if the terms are understood in the way accepted in “classical logic” (see
XXX).

1.5. Two methods of defining sets and some notation

Listing method: One way to define a set is to list the objects of which the set is
composed. By {ai.a,....,a,} we shall denote the set whose elements are a;,as,....dn.

Rule method: Various sets can be defined to be the set of those objects that satisfy
a specific condition ®(x) (e.g. are mathematicians if ®(x) is mathemati-
cian(x)). The set thus defined will be denoted by {x|®(x)}. Surprisingly enough
(see the next Section), for some conditions of the form ®(x) the objects that satisfy
that conditions do not form a set (an assumption that they do yields contradiction).

The set {ai.,az....,an} is the set whose elements are a;,a,...,a, and {x|®(x)} is the set
of all objects x that satisfy condition ®(x). Thus as long as we do not mind using
informal language, the notation we have introduced is redundant.

Along with notation {aj,as.....an} on various occasions we shall use another one,
namely (ay,as,...,an). The latter stands for the “sequence” formed by arranging ob-
jects ai, a,...,an in the indicated order; the first element of the sequence is a;, the
second is ay, etc., the last a,. Two elements of the sequence need not to be differ-
ent; thus e.g. a3 might be the same as as. Two sequences (ai,as,....an) and
(b1,b3,...,by) are identical iff n = m (i.e. they are of the same length) and fore every
i, ai = bi. The term “sequence” will be applied interchangeably with n-fuple (n be-
ing the length of the sequence).

Clearly n-tuple (aj,as....,ay) is not the same as the set {a,a,....an}. We trust the
reader to explain why.

1.6. Unit Sets and Non-Reflexivity Principle

A unit set is a set of the form {a}. Is a unit set {a} the same object as its element
a? The common-sense idea of a set provides no guidance for dealing with this is-
sue. Note that the question of whether {a} = a may be treated as a special case of a
more general one: is it possible that a set is an element of itself? Most of the set-
theorist subscribe to the following

1.5.1. NON-REFLEXIVITY PRINCIPLE: No set is an element of itself.



Then the symbolic version of 1.5.1 is: Vx(set(x) - —(xex). Incidentally instead
of —(xey) one often writes x¢y. Thus Vx(set(x) — x¢x is an alternative way of
formalizing 1.5.1.

One of immediate consequences of Non-Reflexivity Principle is that for no x, x =
{x}; thus, for instance, 0 # {0}, {0} # {{0}},... New York # {New York}, {New
York} # {{New York}}, etc. Indeed, if x = {x} then x € {x}, contrary to Non-
Reflexivity Principle.

Another consequence of Non-Reflexivity is that there is no set of all sets. Indeed,
Suppose that there is such a set. Then it is one of its elements, which by Non-
reflexivity Principle is impossible. Note that since there is no set of all sets then
condition set(x) does not define any set and hence the notation {x|set(x)} stands
for no object.

If all objects of a specific kind do not form a set, we shall occasionally say that they
for a “totality.” Thus we may speak about the totality of sets, totality of all objects,
totality of all n-tuples, etc treating the term “totality” as an informal term. There are
axiomatic systems of set theory in which the concept of totality is opposed to that
of set. In such systems totalities are usually referred to as “classes” rather than
“totalities” (using one term or another is a matter of linguistic preferences).

1.7. Russell’s Paradox

The question of which conditions of the form ®(x) can be used to define a set was
one of the most difficult questions examined by set theorists. It was undertaken and
widely discussed at the beginning of twenty century in response to paradoxes in-
vented by Bertrand Russell. One of them is the following. Define N = {x| set(x)
and x ¢ x}. Of course, there are sets which are not their own elements; one may
call them normal. If there are normal sets, so there must be the set N of all normal
sets, mustn’t it? No. No set meets the condition imposed on elements of N. Indeed,
if N were a set then either N € N (ignore Non-Reflexivity Principle for the time
being) or N ¢ N. But N € N implies that N ¢ N and N ¢ N implies that N € N. So
whichever assumption one selects, one arrives at contradiction.

1.8. Is there a set that has no elements?



A set that has no elements is called empty. Can we safely (without running into
inconsistencies) assume that there is an empty set? Quite a different question is of
whether the idea of the empty set is consistent with the common-sense idea of a set.
The present status of mathematical knowledge do not gives any reason for ques-
tioning the following

1.7.1. THE EMTY SET PRINCIPLE: There is a set such that no object is its
element.

(Use 3 as the symbolic notation for there is and A as that for and. Then the sym-
bolic variant of 1.7.1 is Ix(set(x) AVy y ¢ x).

The positive answer to the question of whether there is an empty set has not been
derived from an analysis of the common-sense idea of the concept. Rather it was
motivated by practical considerations similar to those that resulted in introducing
the concept of zero. Without the concept of zero the language of arithmetic is to
poor to handle some questions. For instance, it does not allow one to answer to the
question “how many people are in the room?” if nobody occupies that room. As we
shall see this in the next Chapter, much the same can be said about the language of
set theory without the concept of the empty set. This one we are going to close by
introducing the symbol of the empty set.

Before we do this let us observe the following. As long as we do not question 1.7.1,
we can bed sure that there is an empty set. Can we be sure that there is only one?
Yes, for if both 4 and B is empty, then the objects being elements of either set are
exactly the same: none.

Remove one by one all elements from {a;,a>,...,a,}. The outcome will be the empty
set {}. This symbol is applied by computer scientists. Mathematicians prefer to
denote the empty set by &. We shall use the latter.



2. A Formal Analysis of a Discourse

2.1. Three Components of a Discourse

Our interest in logic concerns the role it plays in any rational (at least in the sense
that its participants do not change the rules of the discourse at will) discourse
whatsoever, meant to be an exchange of ideas on a fairly well defined subject ma-
ter. Propositions that are produced as outcomes of the discourse might form various
belief systems representing alternative solutions to the discussed issues. Thus e.g.
set theory is a discourse whose subject matter is the meaning of the term set. Vari-
ous axiomatic systems of set theory are belief systems representing alternative
standpoints taken by participants of the discourse. Of course, various informal dis-
course in which we engage on various occasion are not as well defined (and thus
not as rigorous) as mathematical theories.

Every discourse at every its stage is determined by: (1) the objects that are exam-
ined, (2) the subject matter of the discourse meant to be the set of questions that
are to be answered; (3) The assumptions of the discourse meant to be the set of
propositions that the participants of the discourse treat as unquestionable. Objects
dealt with within a discourse might be of any kind whatsoever, notably physical
objects, mental objects (emotions, feelings, beliefs) and intencional objects (values,
norms, abstract concepts). The objects examined in set theory are various set con-
cepts rather than just sets. Actually they often divide into different “sorts” or
“universes” of which usually one is “main” while the other “supplementary” (cf.
XXX).

As a discourse develops every of three parameters that determine the discourse may
change. However, as a rule, a formal analysis of a discourse, meant to be an analy-
sis that can be carried out with the help of concepts and techniques offered both by
logic and mathematics (notably set theory) concerns the discourse at its specific
stage. Logical investigations into dynamics of belief systems is a relatively area of
inquiry, and covers only some aspects of discourse dynamics.

2.1. The Universal Set

One of the key concepts we are going to use in the discussion that follows is that of
a “subset” of a set.

2.2.1. DEFINITION OF A SUBSET: A4 set A is a subset of a set B (is in-
cluded in B), in symbols A B, iffevery element of A is an element of B.



One may formalize this definition as follows: 4 € B=4Vx (x € A - x € B). The
subscript df added to the equivalence connective = indicates that the equivalence
holds true “by definition” (by definition the left part of the equivalence is another
way of saying that what the right part says, see also XXX).

If A < B and 4 # B we write A c B and say that 4 is a proper subset of (is properly
included in) B.

Suppose U is the set of all examined objects within a discourse. Such a set (we
shall always take for granted that it is not empty) is called the universe of the dis-
course (a non-logical term for such a set is “population™). Very often the substantial
part of analyses carried out within a discourse concerns various relations that con-
nect various subsets of the universe. Needless to say that of special interest is those
subsets that can be defined as sets of all objects in U that meet a condition ®(x)
stated in the language of the discourse. The notation for such a set is {x € U |
@D(x)}). Some of such subsets might happen to be empty and thus, if the concept of
an empty set were not included into the language of set theory, prior to using the
notation we have introduced it would be necessary to examine whether there is a
set to which the notation supposedly applies. This apparently inessential restriction
would both complicate and impoverish the language of set theory considerably.

2.2. Algebras of Sets

Though the concepts we are introducing in this section are rather “technical.” On
the other hand the range of their applicability, in particular in formal analyses of
discourses, is rather large.

2.5.1. SELECTED EXISTENTIAL PRINCIPLES: For every sets A and B there

are the following sets:

o The relevant complement of B with respect to A, in symbols A — B, i.e.
the set of those elements in A which are not in B.

o The intersection of A and B, in symbols A N B, i.e. the set of objects
which are both in A and B. (If A N B = O, the sets A, B are said to be
disjoint.)

o The union of A and B, in symbols A U B, i.e. the set of objects which
are in either A or in B (at least in one of these sets).

o The power set of A, in symbols 2, i.e. the set of all subsets of A.

We trust the reader to state the clauses of 2.5.1 in the formalized manner.
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If A is a subset of a universe U, then instead U — A one writes —A4. The set —4 is
called the complement of A (with respect to U). Note that given any power set 2"
the outcome of applying operations N, U, — to elements of 2" is again an element
of 2. The system (2V, N, U, —) which the power set 2 forms along with the op-
erations N, U, — is an example of “algebra of sets” (a subset of a power set defines
an algebra of sets if the outcomes of operations N, U, — applied to elements of
that subset are its elements again). Note that for every universe U, the system ({U,
1}, N, U, —) is an algebra of sets, known as two-element Boolean algebra.

2.3. Venn diagrams

The interiors of the circles 4, B below may serve as a graphic representation of sets
A, B.

A B

Then: (1) The left “half-moon” is A — B; (2) the middle segment (the lens) is the
intersection 4 N B; (3) The right “half-moon” is B — 4; (4) All the three segments
jointly represent the union 4 U B.

In order to indicate that a segment is empty, we shall shade it. In order to indicate
that it is not we shall mark it with +. Thus, if a segment is neither shaded nor con-
tains +, the question of whether it is empty or not is left open.

2.4. Informal vs. Formalized Discourses

We shall distinguish between formalized and informal discourse (thus formalized
and informal belief systems, in particular). To formalize a discourse is to formalize
both its grammar (the rules that govern the way in which the sentences relevant for
the discourse are formed) and its semantics (the rules that the participants of the
discourse observe when they interpret the sentences of which the discourse is com-
posed).

To formalize the grammar (syntax) of a discourse is to set rules that define rigor-
ously how the sentences that might appear as elements of the discourse should be
formed. For instance, among others the following sentences: (1) x is an element of
A, 2) x is in A, (3) x is one of the objects of which A is composed might serve as

10
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informal statements to the effect that x is an element of A. Typically enough
(though not necessarily) formalized languages take symbolic form and thus, in par-
ticular, x € 4 is customarily applied as the formalized counterpart of the above
sentences.

To formalize the semantics of a discourse is to set the rules that prevent one from
assigning a wrong interpretation (meaning) to expressions applied in the discourse.
An interpretation which the participants of the discourse do not consider wrong
will be called acceptable. The notion of an acceptable interpretation is going to be
discussed on several occasions (see especially XXX). Its present explication is
tentative.

2.5. Primitive vs. Auxiliary Terms

The terms whose meanings are supposed to be determined, though not necessarily
in a complete way, by postulates and definitions of a belief system are referred to
as primitive terms of that system. All the remaining terms that appear in the lan-
guage of such a system will be called auxiliary.

Under this stipulation, the expressions such as e.g. not, or, if..then, for all, thus
expressions from the list of logical terms (cf. 1.4.1), are typical auxiliary terms.
They need not be the only terms of this kind. Thus e.g., various mathematical theo-
ries are based on other mathematical theories in the sense that the meaning of their
primitive terms is explicated with the help of terms known from mathematical
theories established earlier. In other words, the primitive terms of the latter serve as
auxiliary terms of the former. For instance the primitive terms of the theory of real
numbers serve as auxiliary terms of probability theory, on the other hand primitive
terms of probability theory serve as auxiliary terms of decision theory. Of course,
there are theories (set theory is one of them) whose only auxiliary terms (except
those that can be introduced by definitions, cf. the next Section) are logical con-
stants.

2.6. Nominal definitions, postulates and meaning stipulations

A special category of auxiliary terms are defined terms. A properly defined term
should be eliminable in the sense that every proposition in which it appears can be
proven to be equivalent to a proposition in which it does not. A definition that in-
troduces a new term as a replacement of either an expression or a grammatical con-
struction that the language of the discourse already contains (and thus meets the
eliminability condition in a direct way) is called nominal.

11
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It is customary to announce that a statement is a nominal definition by furnishing
either identity symbol = or equivalence symbol = (depending on which of them was
applied as the key symbol of the definition) with subscript df (e.g. & =y the set
that has no elements or x ¢ y =4r—(x € y).

In some contexts, “to define” means to produce a statement that determines the
meaning of the defined word in the unique way, provided that the meaning of all
the remaining terms appearing in the definition are fixed. A definition that is meant
to be a unique characteristic of the meaning of a word is called real. In fact, every
nominal also is also real; it defines the meaning of the new term as the same as that
of the expression the new term replaces. The converse may happen not to be true.
In the original language there might not be any expression that has the same
meaning as that assigned to the term introduced by a real definition. For the time
being, we may restrict our comments on the concept of a definition to those given
above (for more on that concept see XXX).

12
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3. Logic of categorical sentences

3.1. Categorical Sentences

Let a universe U be given. Then, the elements of U are called individual objects
(individual, for short) and names for them are called individual names. Every in-
dividual name is either a description (e.g. the capital of the US, the smallest natu-
ral number) or a proper name (e.g. Bill Clinton, (). The former “describe” the ob-
ject to which they refer, the latter only “name” it. The above distinction between
descriptions and proper names is informal and applies to informal languages. In a
formalized language it should be defined in terms of semantic categories (see
XXX).

A general name (e.g. town, president of the US, odd number) is a name intended
for singular objects of a specific kind (or “category”), so nothing in the “content”
of the name indicates to how many objects it refers (the content of a name is the set
of criteria one uses in order to judge whether the name applies to a given object or
not). It may happen thus that a general name, e.g. the city in Poland with more than
millions inhabitants, refers to exactly one object. This does not make it an individ-
ual name, however.

A categorical sentence is a sentence that can be paraphrased to take one of the
following forms (S and P stand for general names): (1) Every S is P, (2) Some S
are P, (3) No S is P or (4) Some S are not P; in symbols: SaP,SiP,SePand S
o P, resp. The symbols q, e, i, and o will be called categorical quantifiers.

Examples: A/l cats are smart (Every cat is smart), Some dogs hate cats (Some dogs
are cat haters). The logic of categorical sentences was studied by Aristotle.

3.2. Formalized Categorical Language

By a formalized categorical language we shall mean a language that meets the fol-
lowing three requirements. (i) It does not contains other categorical sentences other
than that of the form Sa P, Si P, S e P or S o P and their negations. The latter are
formed with the help of the symbol —; (ii) All general names that appear in the vo-
cabulary of the language refer to elements of the same fixed universe; under the
convention we are adopting they will be written in bold courier and hyphenated, if
they include more than one word, e.g. black-cat, president-of-the-US.
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(ii1) Besides the logical constants and general names mentioned above, no other
terms (individual names including) are in the vocabulary of the language.

Example. The sentence cat a smart is formalized (one can easily define a for-
malized language in which it can be formed). The sentences every cat is smart, all
cat are smart and many others are its informal counterparts.

3.3. Deduction Statements

Given any set of sentences X and any sentence o write X |= a in order to state that
o is a logical consequence of (sentences in) X. Alternatively X |= a reads “a fol-
lows logically from X.” One also may say that “X logically entails o”.

Whenever for a specific X and a specific o one states that X |= o, the sentences in X
will be called the premises of the expressed proposition and o its conclusion.

Some notation. Rather than writing {ot;,00,..., an}|= o, we shall prefer to write
o1, 00,. ..,0n |= .. Moreover the following two conventions will be adopted: (1) |= o
abbreviates J |= a and (2) X, ot1,0,...,0 |= o abbreviates X U {ot1,0,..., O} |= 0.

Example.
[D] ecata smart, cati black-cat |- smarti black-cat

Does deduction statement [D] holds true? In other words: does the sentence smart
i black-cat follows from the sentences cat ¢ smart and cati black-cat.

In order to handle questions of this kind the notion of logical consequence has to be
defined. The following approach to this issue is based on ideas s et by Aristotle.

3.4. Logical Entailment

Let a1, aa,..., o |= o be a deduction statement. Replace general names that appear
in oy, 0y,..., 0y o by variables S, P, M, ... representing arbitrary general names
(such variables are often called meta-variables, ct XXX). Take care of replacing
the same names by the same variables and different names by different variables.
Then the outcome of the replacement is a deduction schema. The deduction state-
ment o, 0,..., 0, [= o is said to be its instance (or to “fall under” it) Given a sen-
tence f3, the outcome of such replacement is called a logical schema of 3.
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Example. If in [D] cat is replaced by M, smart by S, and black-cat by P the
resulting deduction schema of [D] will be

[Darii] MaS,MiP|=SiP

3.4.1. LOGICAL VALIDITY OF A DEDUCTION SCHEMA (A
TENTATIVE DEFINITION): A deduction schema is logically valid iff for
no its instance the premises are true and the conclusion is false.

The basic idea of logical analyses carried out by Aristotle was that oy, o,..., o, |=
o holds true iff the logical terms that appear in sentences o,0,..., Oy,0 Tule out
that o, op,..., o, might be true and yet a false. One way to make this definition
precise is the following:

3.4.2. LOGICAL CONSEQUENCE: Let o, ap,..., 0, o be formalized cate-
gorical sentences. Then o, a,..., oy [= o, iff oy, ao,..., 0y [= o is an in-
stance of a logically valid deduction schema.

In virtue of 3.4.2, in order to show that a is not a logical consequence of o, ay,...,
O, (in symbols o, aa,..., O, [# ) it suffice to invalidate the relevant deduction
schema (i.e., to find out an instance of the schema whose premises are true and the
conclusion is false). Thus e.g. (as has already been argued by Aristotle) the schema

MaS,PeM||=SaP

is invalidated by: creature (S), man (M), horse (P). On the other hand, no
substitution invalidates [Darii] and hence the sentence smart i black-cat fol-
lows from the sentences cat ¢ smart and cat i black-cat. The question is how
one can know that no substitution invalidates [Darii].

3.5. The Laws of Logic

The chief task of logical investigations is to find out which sentences follow from
which. Thus, in the basic sense of the word, a law of logic is a statement to the ef-
fect that given a set of sentences along with a sentence, both being of a specific
kind (e.g. being instances of specific schemata), the latter is a logical consequence
of the former. In other word a law of logic is a statement to the effect that for some
specific X and some specific a, X |= a obtains. For instance, as one easily agrees,
from any premises of the form SaM, MaP it follows conclusion of the form SaP,
thus the statement we have just made is a law of logic. Note that to state that thus
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described relation between premises and conclusion holds true is to state that the
deduction schema

[Barbara] SaM, MaP |= SaP

is logically valid.

3.6. Abstract Categorical Languages

The Aristotelian logic is hand in glove with the following world view, one might
call it Aristotelian. The world is a universe of individual objects that in some natu-
ral way divide into different “categories”. Thus to know the structure of the world
one must know how different categories of individual objects are related to one
another. The categorical quantifiers provide the basic tools for such analyses.

The Aristotelian world-view does not provide a good framework for forming rich
and subtle enough knowledge about the world. One of the reasons is that the world
such as we able to see it divides into various overlapping universes rather than a
single one. This explains why some grammatically correct categorical sentences
(e.g. Every stone is hungry or Some hungry objects are circles) are semantically
meaningless. Another is that the Aristotelian idea of a category is rather enigmatic.
Is category the same as a set of individual objects? And if it is not, which sets of
individual objects form a category and which do not? These two points seemingly
of minor significance are both relevant to our present considerations.

The Aristotelian idea of validity of a deduction schema is that a deductive schema
is valid if and only if it cannot be invalidated by substitutions one might form using
general names available in the commonly used language. The following alternative
approach is suggested by Tarski’s analysis of consequence operation (XXX).

Select an universe U. Call a categorical language an U-language if all its general
names are names of objects in U. We are now in a position to improve definition
3.4.1.

3.6.1. LOGICAL VALIDITY OF A DEDUCTION SCHEMA (AN
IMPROVED DEFINITION): A deduction schema is logically valid iff for
no universe U and no U-language, there is an instance of that schema such
that its premises are true and its conclusion is false.

16
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The basic advantage of definition 3.5.1 is that instead of examining validity of de-
ductive schema by appealing to our intuitive knowledge encoded in everyday lan-
guage we might now use the concepts and techniques of set theory.
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4. Set-theoretic Analysis of Aristotelian Logic

4.1. Meta-language

Let us begin with some rather obvious explanations. In both this chapter and the
previous one we have been discussing various formalized categorical languages.
The language in which such a discussion is carried out is called meta-language,
and the language discussed is called object language. Expressions that appear in
meta-language are often called meta-expressions (e.g. meta-variables or meta-
sentences). Those which belong to object language might be called object-
expressions.

The basic criterion for distinguishing expressions of the object language from those
of meta-language is that we use the former to say something about some “non lin-
guistic” states of affairs, while the latter are applied to refer to (to state something
about) the former. Thus e.g. we refer to the sentence “cat a smart” and indi-
rectly we refer to its informal counterpart “Every cats are smart” whenever we
state anything about that sentence, e.g. that it is true. On the other hand we may
either in object language or in meta-language use any of these two sentence say
“Every cats are smart” to state that cats are smart. Since both referring to a sen-
tence and using it might be confusing, we will not use formalized sentences in
meta-language but only refer to them. This cannot be the case of informal state-
ments however. In meta-linguistic considerations they will be both referred and
used.

Another source of confusion might be the practice of using the same symbols as
object variables and meta-variables. We shall turn back to this point at the right
time.

4.2. Set-theoretic Analysis of Categorical Statements

Given a general name S, denote by [S] the set of all objects to which the name re-
fers. It will be referred to as the extension of S. Thus in particular if Sy is a general
name of a U-language then [Sy] = X.

One way to understand the categorical sentences is the following:

[ac] S acP =4 [S] < [P] (=4 Vx(S(x) = P(x)))
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[ic] SicP =4 [S] N [P]# D (=43x(S(x) A P(x)))
lec] S ecP =4 [S] N [P] =D (=4—3x(S(x) A P(x)))
[oc] S0P =4[S] - [P]# D (=4—Vx(S(x) > P(x)))

With these definitions being accepted, the question of validity of deduction schema
becomes a question of validity of a statement that concerns relations between sets.
Indeed, consider for instance the schema [Darii]. In order to invalidate [Darii] one
must find a universe U and three its subsets X, ¥ and Z such that [M] =X, [S] =Y
and [P] = Z and moreover X < ¥, X N Z # & and nevertheless ¥ N Z = . Yet, as
one might fairly easily prove, the following is a theorem of set theory: If X < Y and
XN Z+#Dthan Y N Z# . If so, [Darii] cannot be invalidated by any substitution
in any U-language whatsoever.

4.3. Logical Foundations of Logic

The above presented proof of validity of [Darii] provokes the following question.
The proof that involves set-theoretic considerations involves also logic underlying
set theory. Does such an argument prove anything or rather is a typical example of
vicious circle?

The question deserves our attention. We surely cannot prove logical validity of a
deduction schema without using any “logic”. The right policy is the following. Call
a mode of reasoning that never results in arriving to false conclusion from true
premises reliable.

At each stage of development of our knowledge we have some ideas of reliable
modes of reasoning. A natural laboratory for discovering them is mathematics. Al-
though the Aristotelian logic was in no direct way motivated by mathematical
analysis, Greek philosophers fully appreciated the role of mathematics in setting
standards of correct and precise reasoning. On the other hand, Greeks were able to
identify only some of modes of reasoning applied in mathematics and state them
only in very general terms. Discovering how the mathematicians reason took very
long time; it was completed only at the beginning of twenties century.

Once we establish reliability of a mode of reasoning we are entitled to use them in
all arguments, the proofs of logical validity of deduction schemata included. Thus
“theoretical” logic (logic meant to be a system of logically valid deduction sche-
mata) is based on “practical” logic — the logic of reliable modes of reasoning ap-
plied by competent mathematicians, also those who never learned “theoretical”
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logic. If we look at the thing in this way, there is nothing inappropriate in using set-
theoretic arguments for proving logical of validity of logical schemata.

It might happen (the Russell paradox is an example) that apparently reliable mode
of reasoning results yields contradiction. In each such case the logical foundations
of mathematics (and consequently all sciences based on it) should be reexamined.
In fact, no matter how reliable seems to be a way of reasoning we never can be sure
it cannot be a source of antinomies. No skeptical conclusion (any thesis of impos-
sibility of arriving at reliable knowledge) can be derived from this observation. The
open question is, however, of whether the continuous process of improving the
standards of reliability might eventually be halted by conceptual problem we are
not able to overcome. If this happens (we cannot know if it does), the process of
knowledge formation will stop and our past achievements will be put in question.

4.4. Are Laws of Aristotelian Logic Valid?

By a (deduction) law of logic we shall mean a true statement to the effect that a
deduction schema is valid. Curiously enough, under the set-theoretic approach pre-
sented in 3.6 some of the deduction schemata identified by Aristotle as logically
valid can be invalidated. For instance the following two (known as subordination
laws):

(A1) SaP|=SiP,
(A2) SeP|=SoP

Consider (A1). If S is an empty name (i.e. its extension is empty) then [S] < [P] (to
say that if x € [S] then x € [P] is tantamount to saying that there is no x such that x
€ [S] and x ¢ [P]). Thus S ac P. And yet [S] N [P] = & , which means that S i. P
is false. Consequently, the deduction schema (A1) applied to a true sentence (e.g.
mermaid a blond) may yield a false one. E.g. in virtue of that schema from true
sentence mermaid a blond one might derive as its logical consequence mer-
maid a blond, which is false. We trust the reader to check that the case of (A2)
is fully the same. Every empty name S invalidates the schema.

4.5. Paradoxes of empty names
To begin with note that in order for a categorical language to enable one to invali-

date (A1) and (A2) the language must contain at least one empty name. Conse-
quently, the Aristotelian logic remains sound if the scope of its applicability is re-

20



21

stricted to languages with no empty names. The question is: are there any good
reasons to postulate such a restriction?

One of such reasons is that from the intuitive standpoint both the sentence mer-
maid a blond and the sentence mermaid ¢ blond (in fact any two sentences
instantiating schemata S a P, S e P) cannot be simultaneously true; it does not
make sense to maintain at the same time that all mermaids are blond and no mer-
maid is blond. As a matter of fact, the statement to the effect that these two sen-
tences cannot be simultaneously true is one of the laws of the Aristotelian logic. It
is not clear whether Aristotle was aware of problems that would arise if his logic
were applied to empty names.

4.6. Was Aristotle right?

Some animals are predators and some are not. But of these two facts the latter is
not a logical consequence of the former. One might imagine a world in which all
animals are predators. If some animals are terrestrial and some are reptiles, then
one might wonder if there are both terrestrial reptiles and non-terrestrial reptails.
Consider a discourse for which these questions are relevant. Is their logical analysis
possible with the help of Aristotelian logic? Not quite so. The idea of non-predator
involves complement operator non and the idea of terrestrial reptile involves
(though in the hidden form) the intersection operator and. The idea of non-
terrestrial reptiles involves both. Recall that these two operators are known from
the set-theoretic analyses in which they are respectively denoted by — and M.

Though (as a matter of fact for no substantial reasons) set theory is not treated as a
part of logic, the role which set concepts play in a discourse is much the same as
that of logical concepts; they serve as basic tools for analysis of how the extensions
of the primitive terms of the discourse are related to one another. In order for such
analysis to be possible the discourse should be formalized in a language which
contains the two constants. Of course, that can be easily done and of course the
resulting language will be essentially richer that the categorical language in its
original form. Since the constants — and M apply to names, the Aristotelian logic
expanded by them is occasionally called logic of names.

Let us now turn back to the question that ends the previous chapter. Should the
empty names be ruled out from formalized languages? The case when one claims
both that all mermaids are not blond and none is blond, might be ignored as one
that concerns unreal world. But what about someone claim that all policemen that
enter the room were drunk in the situation when no policemen enter the room. Do
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we really might agree to treat the sentence A/l policemen that enter the room were
drunk as true just because the sentence is about non-existing policemen?

Yes, the semantics of statements that involve empty names allows one to produce
true and counterintuitive statements. So perhaps one should ban using empty names
in a rigorous discourse. On the other hand there is something annoying in the fact
that given names S and P, one neither can form the name —S nor SNP, unless one
verifies in advance that the name in question is not empty. So the choice is between
counterintuitive semantics and unduly restrictive grammar. This problem is much
the same as that concerning the empty set (cf. XXX). If the subject of logical
analysis is an everyday discourse we might prefer to ban using empty names. If the
discourse concerns some sophisticated formal issues, we may prefer avoid unduly
restrictive grammatical restrains. Thus, e.g., the formalized languages of mathe-
matical considerations allow one for producing statements that both apparently
deny one another (e.g. A/l prime number different from 7 divide by 7 and None
prime number different from 7 divide by 7) and are simultaneously true for other-
wise it would be necessary to ban using empty names (e.g. a prime number differ-
ent from 7 that divides by 7).

4.7. Some logical relations definable in terms of entailment

Two sentences o and [ are said to:

e Exclude one the other iff o |= —f3

o Complement one the other iff —o |= 3

o Contradict one the other iff they are both exclusive and complementary.
(Note that: (1) o |= =B iff B |= —a, and (2) —a |= B iff = = o)
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5. Predicates

5.1. Some Examples

The following is an example of a proposition that cannot be expressed in the form
of a categorical sentence: For every prime number x there is a prime number y
greater that x. Actually, the proposition can be expressed in categorical language,
but to do this one has use infinitely many categorical sentences of the form
prime-number o0 prime-number-that-is-not-greater-than-x,
where x should be replaced by the individual name of a prime number.

A rather informal statement Regardless of how rich is someone, sooner or later
somebody will be richer than her/him has a similar formal (though not exactly the
same) formal structure than the previous one. It cannot be formalized with the help
of a finite number of categorical sentences either.

In spite of what was believed by many eminent philosophers still at the beginning
of twenties century, hardly any discourse can be adequately presented as a finite
sequence of categorical statements. As a rule, logical analysis of a discourse re-
quires both richer descriptive means and stronger logical tools than those provided
by the idea of categorical language combined with that of Aristotelian logic.

The languages we are going to examine beginning from this Chapter are known as
“first order predicate languages with identity.” Their descriptive means do not re-
duce to general names and their logical means are the same as those applied in
mathematical reasoning. Even though one should not expect that every discourse
can be formalized within first order predicate language (cf. XXX) both theoretical
and practical significance of these languages is enormous.

5.2. One-Sorted Relations vs. One-Sorted Predicates

Rather than carrying our discussion in a fully general way, let us assume that we
want to analyze the formal structure of a discourse whose subject matter concerns a
population (universe) H of people. The examined issues determine the language of
the discourse — both its descriptive (i.e. directly related to the subject matter of the
discourse) and its auxiliary part. Besides general names, the descriptive vocabulary
of the discourse might include some predicates i.e. terms that denote relations. The
predicate richer-than is an example of a binary predicate, i.c. a one that
stands for a binary (holding between a couple of individuals) relation. The predi-
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cate son-of-and is an example of a ternary predicate — a predicate that stands
for a relation that is defined for triples of objects, etc. It will be convenient to treat
general names as unary predicates and to treat the sets of individuals they denote
(their extensions) as unary relations.

Switching from ordinary notation to formalized one (writing richer-than in-
stead of is richer than, son-of-and instead of is a son of ... and...) should not
reduce to typography. It should be accompanied by semantic analyses that explicate
the meaning in which the formalized expressions are applied in the discourse. Thus
e.g. of two eco-systems one might be richer than the other, but of course, the term
richer, in a discourse that concerns people (more specifically those who form the
population H) does not mean the same as it means in a discourse that concerns eco-
systems (histories, to exhibitions, etc.). Actually it may change from one popula-
tion to another.

The predicates and relations we have discussed above are “one-sorted” in the sense
we are going to explain in the next Section.

5.3. Many-Sorted Relations and Many-Sorted Predicates

A discourse might require examining relations that hold between objects of two
different “sorts” (¢wo-sorted relations), say between the examined objects that
form the familiar universe H and objects that form a “supplementary” universe T
of, say, time instances. Also, it might require examining relations that connect ob-
jects belonging to three different “sorts™ (three-sorted relations), say H, T, and a
“supplementary” universe L of selected “locations,” etc.

An example of a binary two-sorted predicate (thus a predicate that denotes a binary
two-sorted relation between persons and time instances) is born-on. The predi-
cate 'met®-at (the superscripts 1 and 2 indicate that the predicate applies to two
persons) is an example of two-sorted ternary predicate. An example of a three
sorted “4-ary” predicate is moved-from-to-at.

5.4. Atomic Wffs

In order to form a sentence with the help of a n-ary predicate, one should supple-
ment the predicate with n-tuple (n element sequence) of individual names of the
right kind. Thus a sentence formed by n-ary predicate P is of the form P(x;, x2,...,
Xn). Note that we describe here the sentences formed by the predicate, thus the vari-
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ables xi, x 2,..., Xn are not object variables (cf. XXX) but meta-variables represent-
ing individual names.

Example. The first term that follows after the predicate moved-from-to-at
should be an individual name of a person (e.g. Thomas-Mann), the second and
the third should be both individual names of some “locations” (e.g. Germany and
USA), the last one should be the date (e.g. 02.09.1939). The sentence formed in
the way indicated by the examples and presented in an abbreviated version is

moved-..(Mann, Germany, USA, 02.09.1939).

A term that complements an expression is called its argument. A sentence formed
by predicate completed by arguments each being an appropriately selected individ-
ual name is called atomic. If any individual names are replaced by variables, the
formula resulting from an atomic sentence is an afomic sentential function.
Atomic sentences along with atomic sentential formulas form the set of all atomic
well-formed-formulas, wff’s for short.

5.5. Extensions of Predicates

Recall that if P is a general name then [P] stands for its extension, i.e. the set of
individual objects (elements of the defined in advance universe U) to which P re-
fers. The above will be generalized as follows. Given a n-ary predicate P we shall
by the extension [P] of P we shall meant the set of all n-tuples of individual objects
of which the predicate is true (one may truly assert the predicate of each of them).
Assume that the universes of the analyzed discourse are the familiar H, E and L.

Examples: (1) [younger-than] is the set of all pairs (x, y) of persons in H such
that x is younger than y; (2) [born-on] is the set of all couples (x, y) such that x is
in H, y is in E and x was born at the time of y; (3) ['moved-from’-to’-
before’-moved-from®-to®] (the superscripts indicate the places where the
arguments of the predicate should be placed) is the set of 6-tuples (x;, x 2, ..., X ¢)
such that x; and x4 are in H while x 5, x 3, x 5, and x ¢ are in L and x; moved from x,
to x 3 before x4 moved from xs5to x .

Is the extension [P] of P the same as the relation the predicate denotes? The com-
mon-sense of the term “relation” does not allow one to answer to this question con-
clusively, so in order to answer to it one has to explicate the meaning of that term
one way or another. From now on by a n-ary relation we shall mean a set of n-
tuples of the defined in advance kind (see the nest Section) in particular n-tuples
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that form the extension of a predicate. Thus we have settled the question that opens
this paragraph in positive.

5.6. Extensions of Predicates

Can the term extension and the corresponding notation be applied to individual
names? This is a verbal question, i.e. one that one might decide as one wish; there
no clear criteria of good solution to it. We decide it in positive. Thus given a name
p we shall denote by [p] the unit set whose only element is the referent of the
name.

Incidentally, if a name is considered to be a term of a formalized language we shall
indicate this fact by using courier non-bold characters.

5.7. Set-Theoretic Concept of a Relation

Let (Uj, Uy, ... ,Uy) be a sequence of non-empty sets (recall that, the elements of
this sequence need not to differ one from another). In set theory the symbol U; x
U, x ... x U, stands for the set of all n-element sequences, (x1, X2, ..., X n) such that
x1€ Up,x2¢e Uy, ..., x4 € U, Te set thus defined is referred to as the Cartesian
product of U, Uy, ... .U,.

A n-ary relation in an abstract set-theoretic sense of the word is a set R such that R
c U; x Uy x ... x Uy, for some non-empty sets Uy, U, ... ,U,.

5.8. Wffs formed by means of predicates

Suppose [P] < U; x Uy x ... x Uy, where Uy, Uy, ... ,U, are universes of the dis-
course whose lists of predicates includes P. Then

5.6.1a. WELL FORMED ATOMIC FORMULAS. A formula of the form
P(x1, X 2,..., Xp) 1S an atomic wff (a well-formed atomic formula) iff the
symbols that occupy the places indicted by the meta-variables xi, x 2, ..., X n
are expressions that apply to (i.e. name or represent individual objects in the
corresponding universes Uj, Uy, ... ,U.

b. ATOMIC SENTENCES. A wff of the form P(x|, x 2,..., X,) is an atomic
sentence iff no its argument is a variable.
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Note the following. Before one starts forming atomic wffs, one has to decide which
variables will represent which individual objects. As is customary the totality (the
set if it is a set) of all objects represented by a variable will be called its scope.
Thus e.g. formula born-on(x, x) cannot be a well-formed formula because no
person is a date on which he or she was born. The rule of using the different vari-
ables to represent objects of different kind (belonging to different universes) has
been violated.

The above definitions are often stated in terms of “semantic categories™ of the
terms of which the formula P(xy, x ..., x,) is composed.

5.9. Semantic Categories of Predicates and Individual Names

The concept of a semantic category cannot be define unless the language (or a spe-
cific class languages) to which this applies is defined. Our ultimate task is to define
a class of languages know as “first order predicate languages.” Tentatively we
might define these languages as languages whose simplest (atomic) wffs are
formed by predicates in the way we have described and all the remaining wffs are
formed by means of the logical constants listed in 1.4. As we are going to see,
atomic wffs can also be formed by “operators” meant to be descriptive terms that
denote functions (see XXX) and identity predicate.

Let us agree to use the term predicate language as a general name for all languages
whose atomic sentences are formed either by predicates or by operators along with
identity symbol and whose compound sentences are formed by specified in ad-
vance connectives and quantifiers. Neither connectives nor quantifiers need to be
classical (cf. 1.4). Though the definition of a predicate language we have offered is
rather loose, the concept will be useful.

Rather than to introduce the concept of a semantic category in an explicit manner
we shall restrict ourselves to adopting the following

5.6.2. THE PRINCIPLE OF IDENTITY OF SEMANTIC CATEGORIES:
Two descriptive expressions & and £ of a predicate language are of the same
semantic category iff the result of replacing in an atomic wif one of these
expressions at any of its occurrences by the other is again an atomic wff.

Note that under the above principle the following obtains: (1) two predicates P and
Q are of the same semantic category iff their extensions are subsets of the same
Cartesian product of universes of the discourse in which these two predicates ap-
pear, (2) two “nominal expressions” (in the discussed case, cf. also XXX, individ-
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ual names or variables representing individual objects) are of the same semantic
category iff the objects to which they apply (refer in the case of an individual name
or represent in the case of a variable) are in the same universe.
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6. Compound Well-Formed Formulas

6.1. Wffs Formed by Means of Connectives

All wffs of a predicate language divide into atomic and compound. Assume that the
former have been defined. Actually the definition we have provided does not cover
the case when the predicate language contains the identity symbol, cf. XXX. The
way in which compound formulas are formed by means of connectives is defined
as follows

6.1.1. COMPOUND FORMULAS FORMED BY CONNECTIVES: Let o and
B be wifs of a predicate language with classical connectives. The so are:

= (a—>P), (aaP), (avP) and (a=Pp).

A more involved is the rule that governs formation of compound sentences by
quantifiers.

6.2. Wifs Formed by Means of Quantifiers

To begin with, given any formula of either the form Vx(®(x)) or the form Jx
(D(x)), we shall say that the variable x appearing in the the formula ®(x) is bound
Note that the scope of a quantifier (i.e. the formula to which the quantifier applies)
is determined by parentheses, and thus, for instance, the scope of 3x in the formula
Ix(D(x)) v Y(x) is D(x) only. Thus x is bound in @(x) and free in W(x) (unless ¥(x)
contains a quantifier that bounds x in that formula also). A variable that is not
bound by any quantifier is called free.

6.2.1. COMPOUND WFFS FORMED BY QUANTIFIERS: Let a be a wif
and let x of a variable of the same discourse. Then both Vx(a) and Fx(ot)
are wffs, provided that the variable x is free in .

The rules of using parentheses need not be exactly the same as those defined by

6.1.1 and 6.2.1. In any case, however, they should guarantee that there is only one
right way of interpreting compound sentences.
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6.3. Sentences vs. Propositional Functions

A wif which contains a free variable may have no definite truth value, for its truth value
may change depending on which object is selected to be the one to which the variable ap-
plies. A variable that appears in an atomic wff is always free. Thus the definition 5.6.1b of
an atomic sentence is consistent with the following more general:

6.3.1. SENTENCES: Let o be a wiff then a is a sentence iff it contains no
free variable or else it is a propositional function.

6.4. Identity Predicate

Note that from the grammatical standpoint identity symbol = is a binary predicate
(the fact that we write x = x rather than is-the-same-as(x, x) is a matter of
convention). It is not a descriptive term however; its meaning can be defined in a
fully general way independent of any semantic considerations that are related to a
specific discourse and its language.

For the time being we shall use identity symbol in its intuitive sense. A logical
analysis of its meaning will be provided in XXX.

6.5. Functions and Operators

A natural way of using the identity symbol for forming formulas of a predicate lan-
guage is the following. Suppose the relation [P] denoted by a non-unary predicate
P is a function from its initial domains into the last one (the latter is often called
counterdomain), i.e. it satisfies the following

6.5.1. UNIQENESS CONDITION: Let [P] € U; x Uy x ... x Uy x Upyy. The
relation [P] is said to satisfy the uniqueness condition iff for every n-tuple
(X1, X 25..., xp) in U} x Uy x ... x U, U there is exactly one object xu+; in
U1 such that (x1, x 2,..., Xn, Xn+1) €[P].

Examples. Let H denotes the population of all people. Then the predicate mother
denotes a function from H into H, for everybody has exactly one mother. Suppose
the set L of locations is defined to include all places in which somebody was born
and more over it is constructed in such a way for every x in H there is exactly one y
in L such that x was born in y. Then predicate born-in denotes a function from

Hto L.
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6.6. Two Patterns of Forming Atomic Wffs

Let the extension [P] of predicate P be a function. Then instead forming the corre-
sponding atomic formulas according to the “relational pattern” P(xy, X 2,..., Xn, Xn+1)
we may form this formula using “functional pattern” P>(x1, X 25..., Xn) = Xnt1, OF
rather P>(xy, X 2,..., Xn) = Xn+1, Where P> is a new term defined with the help of an
old one as follows:

6.6.1. P>(x1,x2,...,xn)= Xn+1 iffP(xl,xz,...,xn, xn+1)

Thus e.g. rather to write born-in(Hasek, Prague) we may write born-
in>(Hasek) = Prague. A term that denotes a function, thus in particular every
term P> of the kind described above will be called an operator.

Needless to say that an operator may appear in a discourse as its primitive term; it
need not to be introduced by a definition of the form 6.6.1. Note that in virtue of
principle 5.1.2 the semantic category of an operator is always different from that of
a predicate (replacing one by another in an atomic wff results in forming a formula
which is “grammatically coherent” — its grammatical structure is consistent with
the accepted grammatical rules). In the most general terms semantic categories of
predicates symbols of relations of a specific kind, while those of operators are
symbols of functions. Using symbolic notation we shall refer to operators by means
of letter F rather than P.

As one may expect, given a operator F, the notation [F] will stand for the function
F denotes. Note, however, that under the accepted definition of a function, every
function is a relation. Thus in particular, for every predicate P that denotes a func-
tion [P] = [P>].

6.7. Atomic Formulas of First-Order Languages with Operators

The two schemata F(xi, X 2,..., Xm) = Xm+1 and P(y1, V..., Ym) define the class of
atomic formulas in a complete way only if the scopes of the meta-variables x;,
X2+ +» Xms Xm+1 @nd Y1, V2,..., Ym appearing in them are defined in the right way. Of
course they may represent either individual names or object variables of the right
semantic category. Note, however, that if F(x|, X 2,..., Xm) = Xm+1 1S @ WIT then F(x,
X 2,..., Xm) 1S an expression that represents the same objects as those represented by
Xm+1. Thus besides individual names and object variables these expressions should
be classified as nominal formulas, more precisely compound ones. Moreover, we
may accept the following convention.
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6.7.1. SEMANTIC CATEGORIES OF NOMINAL EXPRESSIONS: Suppose
F(X1, X 25..., Xm) = Xm+1 1S @ Wif. Then F(xi, xp,..., Xn) is of the same seman-
tic category as that of xy+

In virtue of the principle 5.6.2 and convention 6.7.1 the class of atomic wffs is
larger than that determined by schemata F(xy, x 2,..., Xm) = Xm+1 and P(y1, V2y..., ¥Ym)
under the interpretation that restrict the scopes of meta-variables x;, x2,..., Xm, Xm+1
and y1, y2,..., Ym to non-compound ones. The following definition summarizes the
above discussion.

6.7.2. SCHEMATA OF ATOMIC WFFS. Suppose F denotes a m-ary func-
tion P denotes a n-ary relation. Then the two schemata F(xy, x 2,..., Xm) =
Xm+1 and P(yy, y 2,..., Vn) represent all atomic wff’s that can be formed by
means of these two terms, provided that every meta-variables appearing in
those schemata represents all nominal expressions of the semantic category
characteristic of the argument that the meta-variable represents.

6.8. First Order Languages

A first order language was (cf. XXX) tentatively defined as a language whose
atomic sentences are formed by predicates and operators and whose compound
sentences are formed by classical logical constants. The definitions we have pro-
vided in this and the previous section explicate both the concept of an atomic for-
mula (wff) and that of a compound formula of the mentioned kinds. Thus the con-
cept of a first order language has been rigorously defined.

There is one more concept that was introduced in a preliminary way and can be
rigorously defined now, Recall that a special category of compound expressions of
first order languages are nominal formulas. Recall also (cf. XXX) that we have
divided individual names into two kinds: proper names and descriptions. The latter
all nominal formula that do not variables.

Examples. born-in>(HaSek) (the place where HaSek was born) or fa-
ther>(John) (the father of John).
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7. Interpretations

7.1. Syntax vs. Semantics

The two previous chapters were not exclusively devoted to syntactical matters for
we were discussing the semantic role of descriptive terms. In particular we were
pretending that the terms that we are dealing with apply to objects forming three
universes H, T and L. In fact, however, the question of what are those universes
was of little relevance, if any, for the grammatical issues we were discussing. We
might as well treat them as tree abstract sets composed of arbitrary objects. Syn-
tactical analyses of predicate languages (notably first order predicate languages)
can be carried out without undertaking any semantic issue.

There are two rather radically different ways in which semantic problems can be
approached. One involves the idea of “intended interpretation.” As a rule, in our
semantic comments offered on various occasions we tacitly applied that approach.
It consists in pretending that given a discourse, the meaning of its descriptive terms
is fixed. Thus if a discourse concerns the objects in the universes H, T and L we
know exactly what these objects are. When one of predicates of the discourse is
mother we know what is the extension [mother]| of that predicate (we know a
procedure that allows us to tell couples (x,y) to which this predicate refers from
those to which it does not), etc.

The problem with the idea of intended interpretation is that it is not a logical con-
cept. The logician is not the right person to decide whether (x,y) € H x H and
whether (x,y) € [mother]. The substantial part of logical analyses should be thus
carried out (the second approach) without appealing to the idea of intended inter-
pretation and using the concept of an (arbitrary) interpretation instead.

7.2. Interpretations

In the most general sense of the word an interpretation is an assignment of mean-
ings to words. In the case of first order predicate language by an interpretation we
shall mean an arbitrary assignment of “extensions” to descriptive terms. Note that
in this definition the term “extension” gains a new meaning. Using it we do not
mean any longer by the extension of a term the extension that the term has under
the intended meaning (interpretation).
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The following notation should help clarifying the matter. Suppose 3 is the inter-
pretation we are using in our semantic consideration of the same predicate language
we have been discussing on various occasions in two previous chapters. Then the
set of objects (they need not be persons any longer) that under the assignment J are
meant to be in H, call them “3J-people”, will be denoted by Hs, the set of “3-
events” will be denoted by E5 and finally the set of “J-locations” will be denoted
Once “3J-universes” are defined, one may extend the interpretation on the descrip-
tive terms in such a way that the semantic categories of interpreted expressions are
respected. Thus

7.2.1. THE PRINCIPLE OF SEMANTIC COHERENCE OF AN
INTERPRETATION. If the semantic category of an individual name p is
that of a name of an object in a universe U, the extension [p]s of p under 3
should be an element of Us. If the semantic category of a predicate P is that
of symbol of a relation whose elements are in U; x U, x ... x U, then the
extension [P]x of that predicate under 3 should be a relation whose ele-
ments are in (Uj)s x (Uz)s x ... x (Uy)s. Finally, if the semantic category of
an operator F is that of symbol of a function from U; x U; x ... x U, into
Uy then the extension [F]x of that operator under 3 should be a function
from (Ul)j X (Uz)g X ... X (Un)j into (Un+1)3.

7.3. The logical conception of truth

Call a first order language L combined with an arbitrary interpretation 3 a first
order interpreted language. Given a sentence o of L and an interpretation 3 for
that language, we will write [a]s = 1 if « is true under the interpretation I and we
will write [a]s = 0 if it is false.

7.3.1. TRUTH CONDITIONS FOR ATOMIC SENTENCES:
() [P(1,....p0)]s = L iff ([pi]s.-...[p1]3) € [Pls.
(i) [p=qls=1iff [p]s=[qls

7.4. Intended vs. Admissible Interpretations
To say that a sentence o of a first order language is true without indicating explic-

itly the relevant interpretation is to say that o it is true relative to the “intended in-
terpretation”, cf. 6.5. There are two things that should be noticed on this occasion.
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Firstly, as we have noticed already (cf. XXX) the meaning of an informal expres-
sion may change from one discourse to another). Secondly, hardly ever the in-
tended interpretation characteristic of a specific discourse is defined in a unique
way. Rather it is defined “partially”, i.e. by means of a set of various conditions
that rule out some interpretations as “incorrect” or “unacceptable”. And if so, the
informal meaning of descriptive terms is determined by the set of acceptable inter-
pretations (cf. XXX) than a single intended interpretation.

7.5. Non-Extensional Predicates

The following is a paradigmatic example that demonstrates that truth conditions
7.3.1 are not be as obvious as one might believe them to be. Formalize John knows
that the capital of Lithuania is Vilnus as

'knows-that?-is*(John, capital-of(Lithuania), Vilnus)

Suppose John’s geographical knowledge is poor and the analyzed sentence is (un-
der the intended interpretation) false. On the other hand, John surely knows that
Vilnius is Vilnius and hence

'knows-that®-is>*(John, Vilnius, Vilnius)

is true. If 7.3.1 applied to the discussed sentences that could not happened. Indeed,
under the intended interpretation [capital-of(Lithuania)] =[Vilnus] and

hence the two sentences cannot have different truth-values.

The conclusion that follows from the above discussion is that conditions 7.3.1 are
not generally valid. We define a class of languages in which they are valid in the
next Section.

7.6. Extensional Languages

Suppose for some nominal expressions p and g, and an interpretation 3, [p =
g]s = 1. Now consider any two wif’s o, B such that they become identical if all
their parts that are either of the form p or of the form g are replaced by one of
these two expressions, say p. Write o =~ /4 B in order to state that o and 3 are re-
lated in the way described.

7.3.1. EXTENSIONAL PREDICATE LANGUAGES: A predicate language L
is extensional (in the weak sense of the word, cf. XXX) iff the following
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condition is satisfied. Suppose [p = g5 = 1. Then for any two wif’s a, f3
such that o ~ /4 B, [a]s = [B]s.

36



37

8. Semantics of truth-functional connectives

8.1. Truth-postulates for semantic connectives

The following postulates (stated with the help of the concept of truth and hence
called truth-postulates) define the meanings of classical connectives.

8.1.1. TRUTH-POSTULATES FOR THE CLASSICAL CONNECTIVES:

[—] [—os = 1iff [a]5=0
[A] [ A Bls = 1iff [a]s = [B]s=1
[V] [oov Bls =0iff [a]s = [B]s=0
[—] [0 > Bls = Liff [a]s < [Bls
[=] [oo=Bls=1iff [a]s = [Bls

The following “truth-table” provides and alternative way for characterizing the
meanings of the above connectives:

oa|B| —a |[aAnBloavB |a>B o=
1|1 0 1 1 1 1
10 0 0 1 0 0
01 1 0 1 1 0
010 1 0 0 1 1

One might wonder if the accepted truth-postulates for classical connectives are
consistent with the common-sense meaning of their informal counterparts. The
answer is: not in every case. We are going to discuss this point in the next chapter.

8.2. Mutual Definability of Classical Connectives

An inspection of postulates 8.1.1 (or the corresponding truth table) shows that
some of classical connectives are definable in terms of others. Thus e.g. every two
connectives of which one is negation suffice for defining all the remaining ones.

Example. For all o and B and all interpretations 3 the truth vales of conditionals
o — P is exactly the same as that of formulas of the form —(a A —f3). Thus we
may accept A and — as primitive terms and introduce implication connective — by
postulating (o« = B) =¢r —(ct A =P).
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8.3. Tautologies

A sentence that is true under every interpretation is called logically true or alterna-
tively it is called a tautology. We shall state that o is a tautology by writing |= o.

The following are selected of schemata of tautologies:

Law of the Excluded Middle |= o v o
Law of Contradiction = —(a A =)
Law of Double Negation = a=——a

In order to prove that e.g. o v —a is a schema of tautologies we argue as follows.
Whichever might be the sentence o, and whichever might be the interpretation 3,
there are at most two possibilities: either [o]s =1 or [ot]s = 0. Accordingly [—ot]5 =
0 or [—oa]s = 1. But in both cases [a. v —at]5 = 1.

The proof that a schema of sentences that involves two meta-variables representing
sentences, say o and [ is a schema of tautologies requires discussing four possi-
bilities. An example:

Duns Scotus’ Law = o= (=0 = B)

The proof of validity of Duns Scotus’ law might be presented in the form of the
following truth table.

o | B | —a -o = o= (ma = B)
1|1 0 1 1
110 0 1 1
01 1 1 1
010 1 0 1

8.4. Two Concepts of Logical Consequence for First Order Lan-
guages

This is not the notion of logical tautology but that of logical consequence that is of
chief interest of logic. However, one way to define the latter is the following:

8.4.1. THE IMPLICATIONAL CONCEPT OF LOGICAL CONSEQUENCE:
A sentence o is a logically consequence from sentences P, Bas.... Pn iff |=

(BiAB2A...ABn) — .
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An alternative way is the following:

8.4.2. THE SEMANTIC CONCEPT OF LOGICAL CONSEQUENCE: 4
sentence o is a logically consequence from sentences in X, in symbols X |=
o iff there is no interpretation 3 such that for all B € X, [Bls =1 and [o]5 =
0.

The two concepts of entailment are related one to another by the following

8.4.3. DEDUCTION THEOREM: For all sentences Pi,B2,....pn,0 the fol-
lowing two conditions are equivalent:

(1) = (BiAB2A...ABn) — a.,
(ii) B], Bz, ...,Bn |= (04

8.5. Laws of Logical Truth vs. Deduction Laws

If sentences of a kind (typically: sentences defined by a schema) are logically true,
then a statement to the effect that it is so will be referred to as a law of logical
truth. Thus e.g. |= o v —a (i.e. Law of Excluded Middle, cf. 8.2) is a law of logical
truth. Now, if a sentence logically follows from sentences to which it is related in a
specific way (typically: the sentences in question follow under specific schemata),
then a statement to the effect that it is so will be called a deduction law.

An example (a rather special one) of a deduction law is o |= a, i.e. the statement to
the effect that every sentence o is a logical consequence of itself. For more exam-
ples of deduction laws that do not involve any logical constants (we shall call them
universal) see XXX. Amongst the deduction laws that involve logical constants, of
special significance is Modus Ponens: Suppose o, [ are sentences, then

o, o —> B I=P.
Besides deduction laws of the kind exemplified by Modus Ponens there are condi-
tional deduction laws. They will be presented as “fractions” to be read: if the

“numerator schemata™ are valid so is the “dominator schema”. The following is the
conditional variant of Modus Ponens:

XFo,YFa—>p

XUY]EP
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(In order to derive unconditional Modus Ponens from its conditional variant, put in
the latter X = {a}, Y= {a > PB}. Then in virtue of Identity Law, a |= o, the condi-
tions X |= o, Y |= a — P are satisfied and hence also XU Y |= B, i.e. o, a > B |= P
must be true).

8.6. Universal Deduction Laws

The universal deduction laws we are going to state take easier to grasp form if the
notation X |= a is replaced by a € Cn(X).

8.6.1. Suppose X and Y are sets of sentences. Then the following obtains:
Triviality Law: X c Cn(X)

Montonicity Law: If X c ¥, then Cn(X) < Cn(Y)
Closure Law: Cn(Cn(X)) = Cn(Y)
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9. Logic of Knowledge vs. Logic of Conversation

9.1. Discourses and Belief Systems

Semantic analysis based of the truth-postulates for logical constants ignores prag-
matic aspects of communication. In order to interpret correctly what one is saying
(one’s utterance) the other participants of the discourse (conversation) must have a
good idea of both one’s background knowledge (the beliefs that one considers to
be conclusively justified) and the goal one seeks to achieve engaging in the dis-
course. A cooperative discourse is a discourse whose participants seek to achieve
the same goal and do not behave counterproductively. For instance, they do not
hide information relevant to the goal of the discourse. Thus e.g., if being a party of
such a discourse, somebody is saying John has two children, the other participants
are entitled to conclude that John has exactly two children (no information must be
hidden). Such a conclusion that goes beyond what is available by purely logical
analysis of the utterance (as well as the reasoning by means of which one arrives at
it) is called implicature. The rules of arriving at implicatures were stated by Grice.

9.2. Rules of “Conversation”

Changing the term ‘conversation’ to discourse and assuming the cooperative nature
of the discourse we can present Grice’s rules as follows:

Principle of Cooperation. Every participant should make such input into
the exchange of views as is expected at the given stage in the discourse from
the point of view of the aims of the discourse.

Quality maxim. Discourse participants should not put forward views of
whose falsehood they are sure of or even views which aren’t adequately
Justified.

Quantity maxim. No more or less information should be given than is nec-
essary at the given stage of the exchange of views.

Relevance maxim. Propositions which are not significant to the discourse
should not be stated.

Method maxim. The method in which the participants formulate their

statements should be as communicative, as concise, as free of vagueness
and ambiguity as possible.
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9.3. Paradoxes of material implication

Consider the following two sentences:

(1) If Warsaw is in Poland, then whales are mammals.

(2) If Warsaw has about three millions inhabitants, then it has about one million.

Both sentences are true if if...then is interpreted as two-value implication —. On
the other hand whether whales are mammals has nothing to do with where Warsaw
is, and thus (1) states, though implicitly, something that is not true. To maintain
that (2) is true seems to be just an affront to sound reason. It cannot be that if War-
saw has three million participants it has one million. Examples of less or more
striking divergence between the two-valued and common-sense meaning of
if...then are called paradoxes of material implication (here “material” means “two-
valued”)

Counter to the once-dominant view, paradoxes of implication are not a semantic
phenomenon but, rather, a pragmatic phenomenon. The feeling of the unsuitable-
ness of statements like (1) and (2) is not caused by violation of the principles which
determine the truth-value of a proposition. Rather, it arises due to ignoring the
principles of linguistic communication such as the Gricean maxims. The key com-
mandment of pragmatics is not ‘be truthful” but ‘be trustful’. Suppose in reply to
the question asked at 10 a.m. “what the next train to Leipzig is?” Paul hears”
“There is a train going to Leipzig at 4 p.m.” If there is such a train, the answer is
true. However, Paul has every right to claim that he was deceived by the informer,
if there is an earlier train.

9.4. Proofs by Reduction ad Absurdum

Let us return to (2) and the problem of its apparent self-contradiction. It will be
more convenient if, instead of (2) we discuss a mathematical equivalent:

3) If the set {3} has 10 elements, then it has precisely one.
Conditionals with a false antecedent are treated in mathematics as counterfactual
and counted as true. There is something that very powerfully motivates this con-

vention. Assume that we want to show that a certain proposition o is true in the
sense that it follows from postulates considered to be true. A typical way to meet
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this task is the following. Add —a to the postulates and try to show that thus en-
riched set of premises (postulates along with —a) logically entails a. If so, pro-
vided that the postulates are true, the sentence —a cannot be true. For if it were,
one could not be able to demonstrate that o is a logical consequence of thus se-
lected premises; a logical consequence of true premises must be true; under the
standard meaning of negation both —o and o cannot be true. This way of reasoning
is called reductio to absurdum.

If under the adopted convention, all conditionals whose antecedent denies prece-
dent were false, proving that —o — o would be impossible; a sound proof cannot
result in proving a false statement. And if so, it would be impossible to use reduc-
tion ad absurdum as a method of proving mathematical theorems.

An analysis of mathematical arguments shows that the meaning of if then in
mathematical arguments conform to the meaning of two valued —. But this does
not imply that the two coincide on ever occasion. Using a conditional if o then p in
a discourse may yield a false implicture. If this is a case the statement if o then 3
one might be reluctant to treat the conditional if o then B as true.

9.5. Non-Classical Implications

Before Grice formulated his maxims treating paradoxes of material implication as a
pragmatic phenomenon (true implication might yield false implicature) was not
possible. The typical way of approaching this problem consisted in criticizing the
adequacy of the truth-functional analysis of implication. Thus e.g. C. 1. Lewis ad-
vocated the view that the common-sense meaning of if a then 3 is better rendered
by the o = P called strong implication rather than by o« — . Under his analysis
strong implication is to be understood as follows:

o = B =y it is impossible that B is false and o is true.

One might rewrite this as follows o = B =4 —0(a0 A=), with O standing for it pos-
sible that and all the remaining connectives being two-value. Use [] to stand for if
necessary that meant to be the same as —0—. Then —0(at A=) might be succes-
sively rewritten as (1) —0——(a A=B), (2) U=(a A=P), (3) L(aw — P). Thus strong
implication is definable in terms of two-value implication and necessity connective.

Modal logic — such is the name of the logic which studies the formal properties of

the connectives if is possible that and it is necessary that — is based upon the idea
of possible words. The sentence [ is defined as true is it is true in all the possible
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worlds or, sometimes, in all the “accessible” possible worlds. The concept of an
“accessible world” requires a separate definition, of course.

One of the developments which were to result in the replacement of “faulty” classi-
cal logic was based upon the proposal that the truth-value of if o then B statements
can not be decided just by the truth-values of the antecedent and the consequent. It
was argued that the existence of a connection between the content of o and 3 was a
necessary condition for the truth of the conditional. The paradoxical nature of the
whales statement (see (1) in 9.3) was due to the lack of just such a connection. This
direction of investigation was begun by the work of A. R. Anderson and N. D. Bel-
nap Jr. and led to the creation of a whole class of relevance logics.

9.6. The Common-Sense vs. The Formalized Meaning of Connec-
tives

Implication is not the only connective whose informal meaning does not coincide
with the “truth-table” meaning of its formalized counterpart. For instance, to say
Peter visited Ann and changed his plans and to say Peter changed his plans and
visited Ann is two say two different things.
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10. Predicate Calculus

10.1. The Common-Sense Meaning of Generalizations

It is fairly clear how sentences of the form Vx(¢(x)) or Ix(d(x)) (both will be called
generalizations) should be understood. By saying that Vx(¢(x)) one says that the
condition ¢(x) is true of all objects represented by the variable x (e.g of all people if
x represents people). By saying that Ix(¢(x)) one says that ¢(x) is true of at least
one such object. The problem we are going to discuss will not be how the quanti-
fied sentences should be understood but rather how the commonsense idea of their
truth should be expressed in precise terms.

To begin with note the following. To say that the condition ¢(x) is true of an object
a selected from all the objects represented by the variable x is to say that if a is a
proper name for a then the sentence ¢(a) is true. Unfortunately the object @ may
have no proper name in the analyzed language. For instance, in no language we
use, we do not have names for everybody.

A sentence that results from ¢(x) by replacing x by a proper name of the same se-
mantic category as that of x is called an instance of ¢(x). Although we cannot ex-
press the common-sense idea of truth of Vx(¢(x)) (of Ix(d(x))) by saying that all
(some) instances of ¢(x) are true, we certainly may express it by saying that all
(some) “possible instances” (available by adding new proper names) of ¢(x) are
true. The postulate of truth-functionality of quantified sentences should thus be
spelled out as one that requires the truth-values of Vx(¢(x)) and Ix(¢(x)) to be de-
termined by the truth values of “possible instances” of ¢(x).

10.2. Valuations

Suppose a is an object represented by the variable x under an interpretation 3. Then
(unless this violates other stipulations one has already accepted), one may use x as
a proper name for a. The fact that, on a given occasion, a variable x appearing in a
wif ¢(x) as a free variable should be treated as a proper name for @ must be some-
how stated explicitly. The practical aspects of the relevant procedure will not be of
interest for us. It suffice that we agree that whenever free variables xj,...,x, ap-
pearing in a wff y(xy, ...,x,) are treated as proper names for ay, ..., a, respectively,
we shall notify this fact by writing

WX, ..., Xn)[xX1/@y, ..., Xo/@n)
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The procedure of assigning individual objects to free variables is called valuation.

10.3. Truth-postulates for quantified sentences
The meaning of classical quantifiers is defined by the following
10.3.1. TRUTH POSTULATES FOR QUENTIFIERS:
(V) [Vx(¢(x))]s = 1, i.e. the sentence Vx(¢(x)) is true under interpretation
3, if and only if [¢(x)[x/a]]s = 1, for every object a represented by
variable x under interpretation 3.
@ [Fx(d(x))]s = 1, i.e. the sentence Ix(P(x)) is true under interpretation
3, if and only if [¢(x)[x/a]]s = 1, for an object a represented by
variable x under interpretation.
10.4. An example
Let us examine the truth-value of the sentence

(1) Ya(person(a) — 3b(person(b) A mother(a,b))

by appealing to postulates (V) and (3). Select an interpretation 3. By (V), in order
for (1) to be true under I we must have

2) [(person(a) — Jb(person(b) A mother(a,b))[a/p]]s =1
for all p in the scope that J assigns to a. In virtue of the truth-postulate for — (if
one decided to argue on the base of the commonsense meaning of if...then the con-

clusion would be the same) (2) is false if

3) [person(a)[a/p]]s =1, i.e. p € [person]s
4) [(3b(person(b) A mother(a,b))[a/p]]s =0

Under postulate (3) in order for (4) to be false, there must not exist any element q,
in the scope of that 5 has under interpretation 3, such that

%) [(person(b) A mother(b, a))[a/p, b/q]]s=1
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By appealing to either the truth-postulate for A or the commonsense meaning of
and we conclude that (5) obtains iff both

(6) [person(b)[b/q]]s =1, i.e. q € [person]s
and
(7 [mother(b, a)[a/p, b/q]]s =1, i.e. (p, q)€ [mother]s

This ends the logical part of analysis. In order to learn whether for given p and q, p
€ [person]s, q € [person]s, and (p, q) € [mother]s and thus eventually find out
whether (1) is true or not one has to resort to the definition of 3. Of course, one
should resort to the intuitive meanings of the relevant expressions if 3 is meant to
be the intended interpretation.

10.5. Truth-functionality

Suppose that for an interpretation I two sentences o and [ are equivalent, i.e. [a =
B]s = 1. Does this imply that these two sentences are “exchangeable salva veriate”
in any sentential context in which they appear? In other word does this imply that
given any couple of sentences ¢ and ¢’ such that ¢ = o3 @', [¢ = ¢']5 = 1? The an-
swer to this question depends on the vocabulary of the language examined.

Suppose that one of the connectives with the help of which composed formulas are
formed is because. Suppose there was a power brake that stopped a train. Suppose
moreover that there were more than 200 passengers in that train. In the true sen-
tence that states that power brake was cause of the delay replace there was a power
brake by there were more than 200 passengers in that train. The replacement does
not preserve the truth value. The diagnosis is the connective because is not truth
functional connective — its meaning cannot be adequately defined in terms of truth
values of the sentences to which it is applied.

The idea of truth-functionality extends on language as a whole as follows

10.5.1. TRUTH-FUNCTIONAL PREDICATE LANGUAGES. A predicate
language L is truth-fuctional iff the following condition is satisfied. Sup-
pose [a = B]s = 1. Then for any two sentences ¢ and ¢’ such that ¢ ~ o/ ¢’

[[e=0¢l5=1.

A predicate language is said to be extensional (in the strong sense of the word) if it
is both weakly extensional (cf. XXX) and truth-functional.
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10.6. Logical Consequences of wffs

The two chief tasks of logic are the following. Firstly, logic should answer the
question what it means for a sentence o to be logically entailed by (to be logically
implied by, to logically follow from, to be a logical consequence of) a set of sen-
tences X, in symbols X |= a. Secondly, logic should offer tools for proving that X
|= oo whenever the entailment take place. Seemingly the rules for forming the proof
should be implicit in the clauses of the definition of logical consequence. They are,
but the relationship between entailment and provability is fairly complex. In this
chapter we are going to take a closer look at the matter.

Though the object of our prime concern remains sentences, we shall expand the
definition 8.3.2 of logical consequence on wffs.

Recall that an interpretation 3 for the examined language L defines the scopes of
the variables of that language. Let v assigns to every variable x of L an object v(x)
within the scope of the variable x defined by 3.

Now, let a be a wif with xi,...,xx being its only free variables. Let v be a referent
assignment. Then we define:

ofv] = afx1/v(x),....xk/v(x)]

Moreover, given a set of witfs X, we define X[v] to be the set of all formulas of the
form a[v] such that o is in X.

10.5.1. LOGICAL CONSEQUENCE DEFINED FOR WFFS: « is a logical
consequence of wffs in X, in symbols X |= a, iff for every interpretation 3,

and every valuation v to variables elements of their scopes defined by 3, if
JXv]) =1 then I(afv]) = 1.
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11. Laws of Natural Deduction

11.1. The Laws of Natural Deduction for Identity

The term “natural deduction” is related to Gentzen’s discovery (in fact Gentzen’s
and Jaskowski’s) discovery that formal proofs can be presented in the form of a
sequence of “steps”, each step executed in accordance with a “natural” (conforming
to the way in which the mathematicians argue) way of carrying out proofs.

To begin with let us state laws of natural deduction for identity and equivalence. In
spite of the fact that these two logical constants are of entirely different “syntactic
category” (their role in forming sentences is different) there is a considerable simi-
larity between the laws that characterize them.

11. 1.1 NATURAL DEDUCTION SCHEMATA FOR IDENTITY: Let p and
g be nominal expressions and let o and 3 be wffs. Then

Identity Law
=p=p
Replacement Law: Let o~ /4 B, then
XFp=q,YFa
XUY[EP

11.2. Laws of Natural Deduction for Equivalence

11. 1.1 NATURAL DEDUCTION SCHEMATA FOR EQUIVALENCE: Let
o and B be wifs. Then
Identity Law

==
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Replacement Law: Let ¢ ~ 3 @', then

XFa=, I'Foe

XUY[Eg

11.1. Laws of Natural Deduction for Connectives

Modus Ponens:
o, a—>B =P

XFo,YFa—>p

XUY]EP
— - Introduction:
X, o[=p
XFa—>p
Reduction ad absurdum:
X, —al=a
XFa
Laws of overcompletion
o, o=
X=a, YI[F-a
XUY[EB

A-Introduction:
a P Fanp

Xl=a, YI=P

XUYlFanp
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A-Reduction:
aABlFa

XFanp

XFa
Alternative deduction:

Xol=pY,BFy

XuY,avBlFEy

v-Introduction:
X|Fa

XF avp

11.2. Schemata of natural deduction for quantifiers

Instantiation:
X|= Vxp(x)
XT= 6(x)
Universal generalization:
XT= 6(x)
%)
X[= Vx(¢(x))

*) Proviso: The variable x may occur free in no formula in the set X.

Designation:

X[=3x(9(x)) |

X[=4¢(p)
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*) Proviso: p should be a name for the object whose existence is stated by
the formula 3x(¢(x)). If no such name is in the language examined, a name
of this kind may be added to the vocabulary of the language.

Existential generalization:

XT= 6(x)

X[=3x(9(x))

11.3. An Example of a Proof of a Law of Logic

Consider the schema Vx(¢(x)) = ¢(x). One may show that all its instances obtain
and hence it represents a deduction law.

Indeed, suppose I(Vx(d(x))[v]) = 1 for an interpretation I and a referent assign-
ment v consistent with 3. Note that for a given v, Vx(d(x))[v] is a sentence. If all
free variables in the wiff Vx(¢(x)) are xp,...x, then Vx(¢(x))[v] =
Vx(d(x))[x1/v(x1),.... XK/ V(XK)]- By the postulate (V) for v,
I(Vx(d(x)[x1/v(x1),...xk/v(x)]) = 1 iff I(d(x))[x1/v(x1),....x/v(xK) ] [x/a]) = 1, for
every object a represented by x under interpretation J. Thus in particular
(D)) [x1/v(x1),....x1/v(x) ] [x/v(x)]) = 1. But if so we have J(¢(x)[v]) = 1, exactly

as required by (D3]=) in order for VE to hold true, which concludes the argument.
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12. Knowledge Systems

12.1. Two concepts of knowledge

The term “knowledge™ has two meanings. In its epistemological sense, knowledge
is the set of beliefs which have been properly justified and which are true. In the
methodological sense, knowledge is the set of critically developed belief systems
i.e. sets of propositions put forward in order to account for certain states of affairs
and/or events. Some of beliefs that form a belief system might happen not to be
properly justified and, certainly, not all of them need to be true. Belief systems
which make up a system of knowledge may complement and inform each other as
well as provide mutually contradictory answers to the same questions — as is the
case with competing theories in science.

The concept of a belief system is methodological rather than logical. On the other
hand any methodological analysis of a belief system requires logical tools. Such an
analysis is typically carried out with two goals in mind. One is to find out whether
the system is both “internally” consistent, (i.e. no proposition along with its nega-
tion follows from propositions of which the system is composed) and consistent
with well-established facts and reliable hypotheses not being part of the system in a
direct way. Thus, for instance, an account for specific physiological phenomena
should not violate the available and well-established chemical knowledge. The
other chief goal of methodological analysis is to find out whether the propositions
of which the system is composed are of any epistemological significance. The
standard criterion of epistemological significance is falsifibility.

Both consistency and epistemological significance are concepts related to that of
consequence operation. The question we are going to discuss is of whether the con-
sequence relation mentioned can be defined in terms of logical concepts (notably
that of logical consequence) examined in the previous chapters of this guide.

12.2. Consequence Operation vs. Logical Consequence Operation

As an example that illustrates the difference between consequence operation and
logical consequence operation consider the following couple of sentences: fa-
ther(Paul) = John and older(John, Paul). Of course neither follows logi-
cally from the other. On the other hand the latter follows from the former for an
obvious reason. The meaning of the operator £ather and the predicate older
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rule out that older(John, Paul) might happen to be false even though fa-
ther(Paul) = John were true.

Let us agree to use (J= as symbol of consequence relation. This is not a standard
system; one cannot find it in logical writings. The tentative idea of consequence
operation is the following:

12.2.1. THE INTUITIVE CONCEPTION OF CONSEQUENCE RELATION.
A sentence o _follows from premises (assumptions) X, in other words o is a
consequence of X, in symbols X (|= a, iff in virtue of the meanings of terms
that appear in all sentences in question it impossible that the premises (the
sentences that form the set X) are true and nevertheless o is false.

12.3. The Analytical Conception of Consequence Operation

At the first glance the relation between consequence and logical consequence is
easy to define. Although, older(John, Paul) does not follow logically from
father(Paul) = John, it follows logically from father(Paul) = John sup-
plemented by two additional premises: (1) father(Paul) = John — par-
ent(Paul, John) and (2) VxVy(parent(x, y) - older(x, y)). This remark
suggest that, to say that o is a consequence of X is to say that o is a logical conse-
quence of X U g, where g is the set of definitions and postulates that define the
meanings of terms that appear in the relevant formulas.

Both the concept of a definition and that of a postulate is relevant concept. A sen-
tence which is a definition (postulate) within a belief system may not be within
another. Given a belief system B denote by g the set of all definitions and postu-
lates characteristic of that system. For many belief systems (say mathematical theo-
ries given in the form of an axiom system) the set g is well defined. T the same
time for most of informal belief systems it is not. Let us focus our attention on
those for which it is. In view of the above analyses we should examine the concept
of consequence as a relative concept. Our notation should be then changed accord-
ingly. Given a belief system B we shall the consequence relation characteristic of it
by (B|=.

12.2.1. THE ANALITCICAL CONCEPTION OF CONSEQUENCE
RELATION. Let both X and a be defined for a specific belief system B.
Then X (BI= o, iff XU g |=a

The conception we have defined is called analytical because sentences that are
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definitions or postulates as well as all their logical consequences are customarily
called analytical. All the remaining ones are then called synthetical.

12.4. The Pseudo-Analytical Conception of Consequence Operation

As has been argued by Quine, except belief systems that have been axiomatized,
there is no good criterion for distinguishing amongst all propositions of which the
system is composed those which are definitions or postulates from those which are
not. Nonetheless people who are using such system may have a fairly clear daa
what within such a system follows from what. Does one who wishes to formalize
such a system need to start with indicating those which are to be treated as defini-
tions or postulates and those which do not? In view of Quine’s criticism one might
doubt if adopting this methodology is justified. It may suffice to divide proposi-
tions into two categories: those which are considered to be firmly confirmed and
thus unquestionable and the remaining ones. Of course the role of the former in the
system is the same as postulates, so we might call them pseudo-postulates.

Suppose given a belief system B the set of pseudo-postulates of that system has
been somehow (always in a less or more arbitrary manner) defined. Denote it by
Rp. an alternative way of defining the concept of consequence characteristic for a
system B is the following

12.4.1. THE PSEUDO-ANALITCICAL CONCEPTION OF
CONSEQUENCE RELATION. Let both X and o be defined for a specific
belief system B. Then X (B|= o, iff X U Rp |= a.

12.5. Incompleteness of Verbalized Knowledge

Logic in its present form concerns verbalized knowledge. But we know things we
are not able to express in the form of sentences. We know (an obvious example)
how our relatives and friends look like but we are not able to fully verbalize that
knowledge.

One might wonder if the concept a belief system meant to be a set of propositions
provides the right tool for defining what we know. Most likely it is not. Is there any
logic of non-verbalized knowledge? What might be the key assumptions on which
it should be based? What could be its basic concepts? As things are now, we know
no good answers to these questions.
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