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INFERENTIAL INTENSIONALITY

Abstract. The paper is a study of properties of quasi-consequence
operation which is a key notion of the so-called inferential approach in the
theory of sentential calculi established in [5].The principal motivation be-
hind the quasi-consequence, q-consequence for short, stems from the mathe-
matical practice which treats some auxiliary assumptions as mere hypothe-
ses rather than axioms and their further occurrence in place of conclusions
may be justified or not. The main semantic feature of the q-consequence
reflecting the idea is that its rules lead from the non-rejected assumptions
to the accepted conclusions.

First, we focus on the syntactic features of the framework and present
the q-consequence as related to the notion of proof. Such a presentation
uncovers the reasons for which the adjective ”inferential” is used to charac-
terize the approach and , possibly, the term ”inference operation” replaces
”q-consequence”. It also shows that the inferential approach is a gener-
alisation of the Tarski setting and, therefore, it may potentially absorb
several concepts from the theory of sentential calculi, cf. [10]. However,
as some concrete applications show, see e.g. [4], the new approach opens
perspectives for further exploration.

The main part of the paper is devoted to some notions absent in
Tarski approach. We show that for a given q-consequence operation W
instead of one W -equivalence established by the properties of W we may
consider two congruence relations. For one of them the current name is
preserved and for the other the term ”W -equality” is adopted. While
the two relations coincide for any W which is a consequence operation,
for an arbitrary W the inferential equality and the inferential equivalence
may differ. Further to this we introduce the concepts of inferential exten-
sionality and intensionality for q-consequence operations and connectives.
Some general results obtained in Section 3 sufficiently confirm the impor-
tance of these notions. To complete a view, in Section 4 we apply the
new intensionality-extensionality distinction to inferential extensions of a
version of the �Lukasiewicz four valued modal logic.
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1. Generalized inference

Let L = (For, F1, . . . , Fm) be an algebra freely generated by the set of
sentential variables V ar = {p, q, r, . . .} and the operations F1, . . . , Fm rep-
resenting the sentential connectives. In what follows L is called a sentential
language. In most cases, either the language of the classical sentential logic
Lk = (For,¬,→,∨,∧,↔) with negation (¬), implication (→), disjunction
(∨), conjunction (∧), and equivalence (↔), or some of its reducts is con-
sidered. We use Hom(L,A), where A is an algebra similar to L to denote
the set of all homomorphisms of the language L in the A. The elements
of Hom(L,A) settle interpretations of formulas of L in A. In the end, the
elements of End(L) = Hom(L,L), are substitutions of formulas.

The standard notion of syntactical inference, i.e. a proof, is our base.
Each pair (X,α), where X ⊆ For and α ∈ For is called a sequent. A rule
R is any set of sequents, i.e. a subset of 2For ×For. The set of all rules of
inference of L is denoted by Rl(L).

R is structural if (X,α) ∈ R implies that (eX, eα) ∈ R for every
e ∈ End(L). If R is a set of rules then we say that α is R-inferred from
X, X �R α, whenever for some ordinal number ν there is a sequence (a
proof) {αµ}µ≤ν+1 such that

(p1) a = αν+1

(p2) for any µ· ≤ ν + 1: (i) αµ· ∈ X or
(ii) there is Y ⊆ X ∪ {αµ : µ < µ·} and a rule R ∈ R such that

(Y, αµ·) ∈ R.

We say that Y ⊆ For is R-closed, where R = (X,α), if and only if
Y ⊆ X implies that α ∈ Y . Y is R-closed provided that it is R-closed for
every R ∈. For any set X ⊆ For let CnR(X) be the least set of formulas
of L containing X and closed with respect to R:

CnR(X) = ∩{Y ⊆ For : X ⊆ Y and Y is R − closed} .
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C : 2For → 2For is a consequence operation on L and for arbitrary
X,Y ⊆ For it satisfies the following Tarski’s conditions:

(T0) X ⊆ C(X)
(T1) C(X) ⊆ C(Y ) whenever X ⊆ Y
(T2) C(C(X)) = C(X).

If C is a consequence operation on L and R a set of rules of inference such
that C = CnR then R is called a base of C.

1.1. (cf. [10]). If R is a base of a consequence C, then α ∈ C(X) if
and only if X �R α.

To meet the line of the generalized approach, in [6] we were forced to
neglect Tarski’s reflexivity postulate (T0) and to weaken the closure con-
dition (T2). The operation satisfying new requirements was named quasi-
consequence, or q-consequence, for short. Further to this, W : 2For →
2Foris a q-consequence operation on L whenever for any X,Y ⊆ For

(W1) W (X) ⊆ W (Y ) whenever X ⊆ Y
(W2) W (X ∪ W (X)) = W (X).

Notice that to get the Tarski set of postulates it suffices to add to
(W1), W(2) the reflexivity condition

(W0) X ⊆ W (X) .

We assume that a q-inference (q-proof) from X to α,X �∗
R α, is

a sequence {αµ}µ≤ν+1 defined by (p1) and (p2) (ii) only. Thus, X �∗
R

differs from �R by the fact that in the former unlimited use of the rule, of
rep = {{α}, α : α ∈ For}, is not guaranteed axiomatically.

To introduce the “q-notion” corresponding to CnR, we need a special
kind of a relative closure: we shall say that a set of formulas Y ⊆ For is
R-closed relative to X ⊆ For if and only if for each (Z,α) ∈ R ∈ R if
Z ⊆ X ∪ Y , then α ∈ Y . For any X ⊆ For we put

WnR(X) = ∩{Y ⊆ For : Y is R − closed relative to X}

thus defining a mapping WnR : 2For → 2For.
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If W : 2For → 2For. is an operation on L and R a set of rules such
that W = WnR, then R is called a base of W Then, W is a consequence
operation on L and for arbitrary X,Y ⊆ For it satisfies the following
Tarski’s conditions:

1.2. (cf. [5]) WnR is a q-consequence operation on L.

Proof. If X1 ⊆ X2 then each set of formulas of L is closed relative
to X1 as well. Hence (W1).

Assume now that WnR does not satisfy (W2) for a certain X ⊆ For.
Then, there is a R-closed relative to X set of formulas Y0 which is not
R-closed relative to WnR(X) ∪ X. Let then (Z,α) ∈ R ∈ R be a sequent
such that

Z ⊆ WnR(X) ∪ X ∪ Y0 and α �∈ Y0.

Then Z �⊆ X ∪Y0 (since otherwise α ∈ Y0) and therefore there must exist a
β ∈ Z ∩WnR(X) such that β �∈ X ∪Y0. A contradiction: if β ∈ QnR(X),
then β ∈ Y0 ⊆ X ∪ Y0.

Following the construction from [10] used for proving Lemma 1.1, in
a careful way, leads to

1.3. If R is a base of a q-consequence W , i.e. if W = WnR, then
α ∈ W (X) if and only if X �∗

R α.

The main feature of the q-consequence W is that the repetition rule:

rep = ({α}, α : α ∈ For),

in general is not a rule of W . And, if, rep ∈ R, then WnR is a consequence
operation and WnR = CnaR. Then for any set of formulas X ⊆ For :
CnR(X) = X ∪WnR(X) and CnR is the least consequence operation C
stronger than WnR, i.e. such that WnR(X) ⊆ C(X), any X ⊆ For. It is
also worth noting that even if rep �∈ R some formulas from X may appear
in WnR(X). This occurs when some sequents of the rule repetition are
derivable from other rules in R.

1.4. rep is the only rule of inference whose presence in the Tarski’s
consequence paradigm is warranted by a methodological postulate (T0).
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2. Inferential extensionality and intensional-
ity

The repetition rule need not be unrestrainedly valid for arbitratry
q-consequence W . So, in general, for some formulas α, β the condition

(1) α ∈ W (X) if and only if β ∈ W (X)

does not imply

(2) W (X,α) = W (X,β).

The property just mentioned allows us to distinguish two relations between
formulas, and, ultimately, the inferential notions of extensionality and in-
tensionality. The germ of the idea is the Suszko’s distinction between the
denotation of a sentence and its logical value, cf. [9]. In conformity with
the theory of logical calculi, cf. [10], there are good reasons for introducing
the concepts of “W -equivalence” and “W -identity”. The first concept will
be based on the idea that the logical truth of a sentence α with respect
to a given set of premises X coincides with the truth value of the formula
α ∈ W (X). The W -identity, on its turn, depends on the denotation and is
settled by the indiscernibility of sentences in theories containing X.

Now, we shall put it in general terms. Hereafter, the symbols like
ϕ(α/p) and ϕ(β/p), where α, β and ϕ are formulas and p is a propositional
variable, stand for the formulas resulting form ϕ by substituting the formula
α(or β) for all occurrences of p. Given a q-consequence W on L, we define
two binary relations: =W and ≈W on For, putting

(*) α =W β if and only if W (X,ϕ(α/p)) = W (X,ϕ(β/p))
for every α, β, ϕ ∈ For,X ⊆ For and p ∈ V ar.

(**) α ≈W β if and only if ϕ(α/p) ∈ W (X) iff ϕ(β/p) ∈ W (X)
for every α, β, ϕ ∈ For,X ⊆ For and p ∈ V ar.

A moment’s reflection will show that for any operation W on 2For

both relations are equivalences compatible with all connectives, i.e they
are congruence relations of L.

2.1. For any consequence operation C, the relations =C and ≈C

coincide.
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Proof. (⊆). Assume that C is a consequence operation and that
α ≈C β. Let ϕ be any formula, X a set of formulas and let p ∈ V ar.
Then applying (T0) we get ϕ(β/p)) ∈ C(X,ϕ(β/p)) and, therefore, our
second assumption implies ϕ(α/p) ∈ C(X,ϕ(β/p)). Subsequently, using
again (T0), we obtain X ∪ ϕ(α/p) ⊆ C(X,ϕ(β/p)) and by (T1) and (T2),
we finally get C(X,ϕ(α/p)) ⊆ C(X,ϕ(β/p)). The opposite inclusion is
easy to get on much the same way. Therefore α =C β.

(⊇). Assume α =C β and take any ϕ,X and p. Now, if ϕ(α/p)) ∈
C(X) then, due to (T1) and (T2), C(ϕ(α/p)) ⊆ C(C(X)) = C(X). Since
C(ϕ(α/p)) = C(ϕ(β/p)), we obtain that ϕ(β/p)) ∈ C(X). The symmetry
is obvious and therefore α ≈C β.

In general, the W -identity and W -equivalence are related in differ-
ent possible ways. They may be even independent one from the other.
This option is illustrated by an example of a (structural) q-consequence
operation:

2.2. Let L∗ = {For,+,−, ∗} be a sentential language with three
binary connectives. Consider the q-consequence operation W ∗ = WnR
defined on L by the following rule of inference:

R = {{α}, β : α ∈ Sb(p + q) ∪ Sb(p − q), β ∈ Sb(p + q) ∪ Sb(p ∗ q)},
where Sb(α) = {eα : e ∈ End(L)} is the set of all substitutions of the
formula α. It is easy to verify that

α =W∗ β if and only if either α, β ∈ Sb(p + q) ∪ Sb(p − q) or
α, β /∈ Sb(p + q) ∪ Sb(p − q) , and

α ≈W∗ β if and only if α, β ∈ Sb(p + q) ∪ Sb(p ∗ q) .

Therefore, p+q =W∗ p−q while not( p+q ≈W∗ p−q), and not(p+q =W∗

p ∗ q) while p + q ≈W∗ p ∗ q , what means that neither =W∗⊆ ≈W∗ nor
≈W∗⊆ =W∗ . Thus the W ∗-identity and W ∗-equivalence are independent.

Two objects are identical if and only if they share exactly the same
properties, cf. [7]. If we apply this Leibniz dictum for a q-consequence W ,
then α =W β should imply for any ϕ, p and X, if ϕ(α/p)) ∈ W (X) then
ϕ(β/p)) ∈ W (X) and vice-versa. Thus, then also α ≈W β. Taking it into
account a q-consequence W will be called extensional whenever =W⊆ ≈W .

The property of extensionality may be naturally adopted to proposi-
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tional contexts and, ultimately, to connectives. A k-argument connective
fk (k ≥ 1) from a language in which W is defined will be called extensional
for W , or W -extensional , if for any formulas α1, α2, ..., αk, β1, β2, ..., βk :

fk(α1, α2, ..., αk) ≈W fk(β1, β2, ..., βk) , whenever α1 =W β1, α2 =W

β2, ..., αk =W βk .

2.3. Each connective of an extensional inference W is W -extensional.

Now, one may ask when for a given q-consequence operation W the
opposite inclusion holds, i.e., under which conditions ≈W⊆ =W . A partial
answer to this question may be given using the concept of expressibility of
identity by a set of formulas. Where p, q ∈ V ar, let E(p, q) be a set of for-
mulas, E(p, q) ⊆ For, built from the variables p and q. Let, subsequently,
E(α, β) denote the set of formulas obtained from E(p, q) after simultaneous
replacement (substitution) of p, q by α and β, respectively. We shall say
that =W is W -expressible whenever there is E(p, q) ⊆ For such that for
any α, β ∈ For:

(◦) α =W β if and only if E(α, β) ⊆ W (∅).
In such a case one may say that the set E(p, q) expresses the identity with
respect to W . It is a routine matter to verify that

2.4. E(p, q) expresses =W if and only if the following conditions are
satisfied:

(1o) E(α, α) ⊆ W (∅)
(2o) E(α, β) ⊆ W (∅) if and only if E(β, α) ⊆ W (∅)
(3o) If E(α, β) ⊆ W (∅) and E(β, γ) ⊆ W (∅), then E(α, γ) ⊆ (∅)
(4o) For every k-ary connective Fi(i = 1, . . . ,m), E(α1, β1) ⊆ W (∅),

. . . , E(αk, βk) ⊆ W (∅) imply that E(Fi(α1, . . . , αk), Fi(β1, . . . , βk)) ⊆ W (∅)
Taking this into account, we get that

2.5. For any W -expressible identity =W ,≈W ⊆ =W .

Proof. Assume that E(p, q) expresses the relation =W and that α ≈W

β. Now, consider an arbitrary ϕ(p, q) ∈ E(p, q) and take ϕ(α/p, q) =
ϕ(α, q). Then, due to the assumption and (◦)

ϕ(α, α) ∈ W (∅) if and only if ϕ(α, β) ∈ W (∅)
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and, according to 2.4.10, ϕ(α, β) ∈ W (∅). Since ϕ was arbitrary, we con-
clude that E(α, β) ⊆ W (∅) and thus, by (◦), that α =W β.

Accordingly, under the assumptions of 2.5, W -equivalent formulas are
W -identical. It is noteworthy that the W -expressible identity relative to
an abstract inference W resembles in some way the concept of equivalence
from the theory of structural consequence operation, cf. [6]. The analysis
of relations between two concepts may be then an appropriate preliminary
investigation of the class of q-consequences W with W -expressible identity.

3. Structurality and inferential extensions

Similarly as in the theory of consequence operation, the structurality plays
an important role in the inferential approach. A q-consequence W of L is
structural if for every substitution of L (i.e. endomorphism of L)

(S) eW (X) ⊆ W (eX).

Then, as in the standard environment, any pair (L , W ) consisting of
a sentential language L and a structural q-consequence operation W on L
is called an inferential logic.

The studies in [5] show how the well known Lindenbaum-Wójcicki
completeness result for structural logics (L , C) shifts onto the inferential
case. To this aim, however, the notion of logical matrix had to be extended.
Now, when L is a sentential language and A is an algebra similar to L, a
q-matrix is a triple

M∗ = (A,D∗,D),

where D∗ and D are disjoint subsets of the universe A of A (D∗ ∩D = ∅).
D and D∗ are interpreted as sets of rejected and distinguished elements
(values) of M , respectively. For any such M∗ one defines the relation
|=M∗ between sets of formulae and formulae, a matrix q-consequence of
M∗ putting for any X ⊆ For, α ∈ For

X |=M∗ α if and only if for every h ∈ Hom(L,A)(hα ∈ D whenever
hX ∩ D∗ = ∅).
The relation of q-consequence was designed as a formal counterpart of
reasoning admitting rules of inference which from non-rejected assumptions
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lead to accepted conclusions. With every |=M∗ there is uniquely associated
an operation WnM∗ : 2For → 2For such that

α ∈ WnM∗(X) if and only if X |=M∗ α.

The q-concepts coincide with usual concepts of matrix and conse-
quence only if D∗∪D = A, i.e. when the sets D∗ and D are complementary.
Then, the set of rejected elements coincides with the set of non-designated
elements and the structure of matrix reduces to

M = (A,D)

and the q-consequence relation |=M∗and operation WnM∗ reduce to
|=Mand CnM , which are defined by the formulas:

X |=M α if and only if for every h ∈ Hom(L,A)(hα ∈ D whenever
hX ⊆ D) , and

α ∈ CnM (X) if and only if X |=M α.

Given a matrix M = (A,D) and a q-matrix M∗ = (A,D∗,D) for
a language L, a system of sentential logic (a set of ”tautologies”) may
be then defined as the set of all formulas taking for every valuation h (a
homomorphism) of L in A. Traditionally, that set is called content of the
matrix M and denoted as E(M). Thus,

E(M) = {α ∈ For : for every h ∈Hom(L,A), h(α) ∈ D}.
Note, that WnM∗(∅) = CnM (∅) = E(M). So,

3.1. The matrix M and the q-matrix M∗, define the same content,
i.e unique system of sentential logic.

Now, recall that, according to the Lindenbaum result, every logical
system may be represented as the content of some matrix, cf. [10]. Accord-
ingly, 3.1. implies that any logical system may equally well be extended to
a sentential calculus (L, C), where C is a structural consequence operation,
or to an inferential logic (L,W ) with W being a structural q-consequence
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operation. In most cases the inferential extensions are concurrent with sen-
tential extensions, though in special circumstances only inferential exten-
sions are sound. The method of inferential extensions have already found
applications, e.g. in the construction of inferential paraconsistent version
of the three-valued �Lukasiewicz logic:.

3.2.(cf. [4 ) The three-valued �Lukasiewicz matrix for the language
Lk = (For,¬,→,∨,∧,↔) takes the form

M3 = (A3, {1}), where A3 = ({0, 1
2 , 1},¬,→,∨,∧,↔},

and functions of A3 are given by the following tables:

x ¬ x
0 1
1
2

1
2

1 0

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

↔ 0 1
2 1

0 1 1
2 0

1
2

1
2 1 1

2
1 0 1

2 1

The consequence determined by M3 is such that

X |=M3 α iff for every h ∈ Hom(Lk, A3)(if hX ⊆ {1}, then hα = 1)..

Accordingly, the consequence |=M3 is explosive: {α , ¬α} |=M3 β , for any α
and β. This means that the there-valued sentential calculus of �Lukasiewicz
(Lk, CnM3) is not paraconsistent.

Now, retaining 1 as the accepted value and taking 0 as the only re-
jected element consider the following �Lukasiewicz q-matrix

M∗
3 = (A3, {0}, {1})

The q-consequence determined by M∗
3 is such that

X |=M∗
3

α iff for every h ∈ Hom(L, A3)(if hX ⊆ { 1
2 , 1}, then hα = 1),

if all premises are not rejected, i.e. not false, then the conclusion is ac-
cepted, i.e. true. It is easy to note that |=M∗ is paraconsistent. This holds
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true since there are α, β such that not {α , ¬α} |=M β. To see this, one
may simply take α = p and β = q and conclude that any valuation sending
both variables p, q into 1

2 falsifies the inference. Obviously, this also means
that (MP ) is not a rule of |=M∗

3

4. Inferential extensions of �Lukasiewicz modal
logic

�Lukasiewicz [2], [3] constructed a system of four-valued propositional logic,
called �L-modal system, in order to capture the notion of possibility. Leav-
ing aside the evaluation of the philosophical import of the construction,
which met severe criticism of contemporary modal logicians, we remark
that even those who criticized the compatibility of �Lukasiewicz proposal,
appreciated its algebraic potential, see e.g. [1], [8]. And this is mostly why
it has been chosen for investigation.

The algebra of the logic is a product of two two-element Boolean
algebras with implication, negation and one-argument operations of: as-
sertion A (the first) and verum V (the second); i.e., ({0, 1},→,¬, A) and
({0, 1},→,¬, V ), where A(0) = 0, A(1) = 1, and V (0) = V (1) = 1. Its
values are the ordered pairs (1,1), (10), (0,1), (0,0), and the operations of
implication (→) and (negation(¬) are natural compounds of their counter-
parts on the axes. Further to this, the possibility ∆ , is identified with the
cross product of A and V . �Lukasiewicz also considers the twin possibility
∇, which is made when the two arguments, assertion and verum, change
their places in the product. In the sequel we adopt the original simplified
notations taking 1 to stand for (1,1), 2 for (1,0), 3 for (0,1) and 4 for (0,0).

The �Lukasiewicz twin possibility logic algebra has the form:

�L = ({1, 2, 3, 4},→,¬,∆,∇),

with operations defined by the following tables:
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→ 1 2 3 4
1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

x ¬ x
1 4
2 3
3 2
4 1

x � x
1 1
2 1
3 3
4 3

x ∇ x
1 1
2 2
3 1
4 2

The system �L of modal logic is defined on the language L = (For,
→,¬,∆,∇) as the set of all formulas taking for every valuation h (i.e., a
homorphism) of L in �L the distinguished value 1, thus

�L = {α ∈ For : for every h ∈ Hom(L, �L), h(α) = 1}.
4.1. (cf. [2]). The following formulas are in �L:

(i) ∆(p → ∆p), ∆(∆p → p) (i’) ∇(p → ∇p), ∇(∇p → p)
(ii) p → p, p → ∆p (ii’) p → p, p → ∇p.

4.2. (cf. [2]). The formulas ∆p → p and ∇p → p are not in �L.

Let us now consider the following two q-matrices related to the
�Lukasiewicz system �L:

(3) M �L∆ = (�L, {3, 4}, {1}),
(4) M �L∇ = (�L, {2, 4}, {1}).
The choice of the sets of rejected and accepted elements in M �L∆ and

in M �L∇ and the whole idea of considering inferential extensions of the
system of modal logic are in a way connected with �Lukasiewicz attempts
to discern the two operators of possibility. Note, that in the first case
rejected are those elements of the algebra of values which ∆ ”sends to”
not designated values (i.e., different from 1). The q-matrices M �L∆ and
M �L∇ define two inferential extensions of �L-modal logic, i.e. the following
inferential calculi:

(5) (�L,W∆) and (L,W∇);

we put W∆ for WnM �L∆
, and W∇ for WnM �L∇

. Obviously, W∆(∅) =
W∇(∅) = �L.

The questions we are now going to ask will concern the characterisa-
tion of q-consequences W∆,W∇ and the connectives of the two logics from
the point of view of extensionality and intensionality defined in Section 4.
To start with let us take the set of formulas E1(p, q) = {∆(p → q),∆(q →
p)}. We then get
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4.3. α = W∆β if and only if E1(α, β) ⊆ W∆(∅).
Proof. Only the direction from right to left is not trivial. So assume

that E1(α, β) ⊆ W∆(∅). First, one may verify that the formulas in E1(α, β)
under a valuation in L both take the value 1 whenever α and β are sent
either both into {1, 2} or into {3, 4}. In turn, an easy induction will show
that for any h ∈ Hom(L, �L)

(*) hα ∈ {1, 2} if and only if hβ ∈ {1, 2}
is equivalent to

(**) hϕ(α/p)) ∈ {1, 2} if and only if hϕ(β/p)) ∈ {1, 2}.
Therefore, for any X, ϕ and p,W∆(X,ϕ(α/p)) = W∆(X,ϕ(β/p)) and

thus α =W∆ β.

Subsequently, let us take E1(p, q) = {p → q, q → p}. By a simple
table inspection one may also show that

4.4. α ≈W∆ β if and only if E(α, β) ⊆ W∆(∅).
Now observe that 4.1 (i) implies that E1(p,∆p) ⊆ W∆(∅) and, by 4.3,

we finally obtain p =W∆ ∆p. Since, however, due to 4.2 ∆p → p �∈ W∆(∅),
4.4 yields that p and ∆p are not W∆-equivalent, i.e., not p ≈W∆ ∆p.
Therefore

4.5. W∆ is an intensional q-consequence.

On the side of the connectives we obtain that

4.6. ∆ is an extensional connective of W∆ and →,¬,∇ are W∆-
intensional.

Proof. From the proof of 4.3 it easily follows that α =W∆ β implies
that for any h ∈ Hom(L, �L), hα and hβ both are either in {1, 2} or in
{3, 4}. Thus, due to the table for ∆, h(∆α) = h(∆β). So, ∆α ∈ W∆(X)
iff ∆β ∈ W∆(X) and α, β are (δ,W∆)-equivalent, α ∆ ≈W∆ β. Therefore,
∆ is W∆-extensional.

The intensionality of the remaining connectives is exemplified through
examples:
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(→) It suffices to consider the formulas used in the proof of intension-
ality of W∆, i.e., p and ∆p.p =W∆ ∆p, but ∆p → p(p/p) =�∈ W∆(∅) and
∆p → p(∆p/p) ∈ W∆(∅); cf. 4.1 (ii) and 4.2. Therefore, p and ∆p are not
W∆-equivalent.

(¬) Take α = ¬(p → p), β = ¬(∆p → p) and ϕ = ¬p. Using once
again the property from the proof of 5.1 verify that ∆ =W∆ β. Then,
h(ϕ(α/p)) = h(p → p) and h(ϕ(β/p)) = h(∆p → p) for every h. Since
p → p ∈ W∆(∅) and ∆p → p �∈ W∆(∅), α and β are not (ϕ,W∆)-equivalent.

(∇) Again as in (→) we may use p =W∇ ∆p. Now, we take ϕ =
∇p.ϕp/p)) = ∇p and ϕπ/p)) = ∇∆p. One may easily verify that ∇p �∈
W∆(∅) while ∇∆p ∈ W∆(∅). So, p and ∆p are not W∆-equivalent.

Anyone who has carefully passed through this Section will not be sur-
prised that the characterisation of W∆ is similar. ∇ mirrors the properties
of ∆ and, consequently,

4.7. W∇ is an intensional q-consequence.

4.8. ∇ is an extensional connective of W∇ and →,¬,∆ are W∇-
intensional.

5. Final remarks

The distinction between the extensionality and intensionality on the infer-
ential level, i.e. in reference to the concept of q-consequence, is important
for the inferential framework. Actually, it enables a better insight into ex-
ternal properties of inferential calculi, including extensions of several logical
systems.

The �Lukasiewicz four-valued modal matrix proved to be a good exper-
imental range for the study of inferential extensionality and intensionality
of inferential logics and modal connectives. �L = ({1, 2, 3, 4},→,¬,∆,∇) at-
tracted our attention not by its modal properties, which were often justly
contested. Rather, it was an importance of the algebraic potential of an
unusual Boolean product matrix of �L modal logic. The latter has already
been noticed and estimated by several scholars like Simons [8] and, more
recently, Font, Hajek [1].
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It is interesting that in the Boolean Lindenbaum algebras for W∆ and
W∇ the two �Lukasiewicz connectives of possibility identify the ”inference”
filters consisting of formulas, which preceded by ∆ or by ∇ belong either to
W∆(X) or to W∇(X), respectively. Then, the Lindenbaum q-matrices for
(L,W∆) based on X (X ⊆ For) have formulas, which belong to the F∆-
filter W∆(X) as ”accepted”, and the classes of formulas corresponding to
For− (X ∪W∆(X)) as ”rejected”. The situation for (L,W∇) is, obviously,
analogous. These procedures reflect direct ∆ and ∇ filtrations on the
generic set { 1, 2, 3, 4 }:

F∆ = {x : ∆x = 1} = { 1, 2 } ,
F∇ = {x : ∇x = 1} = { 1, 3 } .

It seems that algebraic investigation of congruences of the Boolean
�L-models having more elements may result in a better characterisation of
both modal connectives. In a wider perspective, such investigation would
be a good starting point for getting other interesting results in the theory
of inferential logics.
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