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1 Introduction

Interval-based temporal reasoning over partially/linearly ordered domains is
widely recognized as an important research area in various fields of computer
science and artificial intelligence. Unfortunately, interval-based temporal logics
often present a bad computational behavior. As for the propositional setting and
the linearly ordered domains, the most significant interval temporal logics are
Halpern and Shoham’s Modal Logic of Time Intervals (HS) [6], which has been
shown to be undecidable over several classes of linear orderings by a reduction
from the halting problem, Venema’s CDT [16], which is expressive enough to
embed the whole HS and thus it is undecidable at least on the classes of linear
orderings on which HS is undecidable, the begins/ends fragment of HS (BE),
which has been shown to be undecidable over dense [7] and discrete [4] linear
orderings, and Moszkowski’s Propositional Interval Logic PITL [12], that can be
viewed as a fragment of CDT, which is undecidable over discrete and dense linear
orderings. A comprehensive and up-to-date survey on the main developments,
results, and open problems in the area of propositional interval temporal logics
can be found in [4].

In this paper we focus our attention on Propositional Neighborhood Logic
(PNL). PNL is a (proper) fragment of HS featuring two modalities only, which
corresponds to Allen’s relations meets and met by. A sound and complete ax-
iomatic systems for PNL and a tableau-based semi-decision procedure for it
have been developed in [3]. A tableau-based decision procedure for the future
fragment of PNL (RPNL), over discrete linear orderings, has been recently pro-
posed in [1]. However, such a procedure cannot be easily generalized to the case
of full PNL (as a matter of fact, the procedure outlined in [9] does not work
properly). The main contribution of the present paper is a proof of the decid-
ability of the satisfiability problem for full PNL over different classes of linear



orderings by a reduction to the two-variable fragment of first-order logic over
ordered domains. To the best of our knowledge, apart from the case of RPNL,
this is the first non-trivial case of a decidable propositional interval logic inter-
preted over fully-instantiated temporal structures, that is, temporal structures
containing all intervals that can be built up from a given linear ordering over
points, which does not resort to any projection principle, e.g., locality or homo-
geneity [6]. We conclude the paper with a discussion of decidability issues for
interval temporal logics and a short comparison between PNL and point-based
temporal logics, that allows us to point out the expressive strength of PNL.

2 Propositional Neighborhood Logic (PNL)

The language of the Propositional Neighborhood Logic (PNL for short) consists
of a set of propositional variablesAP, the Boolean connectives ¬ and ∨ , and the
modalities 〈A〉 and 〈A〉, with the dual modalities [A] and [A] (we assume here
the so-called strict semantics, that is, we do not allow intervals with coincident
endpoints; however, all results can be generalized to the non-strict case). The
other classical Boolean connectives can be considered as abbreviations. The
formulas of PNL−, denoted by φ, ψ, . . ., are recursively defined as follows:

φ := p | ¬φ | φ ∨ ψ | 〈A〉φ | 〈A〉φ.

The semantics of PNL− is given in terms of models of the form M = 〈D, V 〉,
where the pair D = 〈D,<〉 is a linearly ordered set and V is a valuation function
for the propositional variables. Given a linear ordering D = 〈D,<〉, the set of
all strict intervals, called interval structure, is denoted by I(D). The valuation
function is a mapping V : AP 7→ 2I(D) in such a way that, for any p ∈ AP,
[d0, d1] ∈ V (p) if (and only if) p is true over [d0, d1]. The truth relation at a
given interval in a model M is defined by induction on the structural complexity
of formulas:

(1) M, [d0, d1] ° p iff [d0, d1] ∈ V (p), for all p ∈ AP;
(2) M, [d0, d1] ° ¬ψ iff it is not the case that M, [d0, d1] ° ψ;
(3) M, [d0, d1] ° φ ∨ ψ iff M, [d0, d1] ° φ or M, [d0, d1] ° ψ;
(4) M, [d0, d1] ° 〈A〉ψ iff there exists d2 s.t. d1 < d2 and M, [d1, d2] ° ψ;
(5) M, [d0, d1] ° 〈A〉ψ iff there exists d2 s.t. d2 < d0 and M, [d2, d0] ° ψ.

PNL is powerful enough to express interesting temporal properties [3]. Be-
side the ability of characterizing various properties of the underlying linear or-
dering, the language of PNL allows one to express the difference operator, and
consequently to simulate nominals. Therefore, every universal property of strict
interval structures can be expressed in such a language.

3 Decidability of PNL

We prove the decidability of PNL by embedding it into 2FO[<]. 2FO[<] is
the fragment of first-order logic (with equality) over ordered domains, whose



language includes a binary relation < interpreted as the linear ordering relation
and uses only two distinct (possibly reused) variables. 2FO[<] formulas are
denoted here by f, g, . . .. Notice that we do not lose generality by restricting
ourselves to unary and binary predicates only; indeed, it is possible to show that
in a language with at most two variables, relational symbols of any arity greater
than two can be discarded [5]. Models of 2FO[<]-formulas are classical first-
order interpretations I where the symbol < is interpreted as a linear ordering
relation. The decidability of the satisfiability problem for the 2FO fragment,
without equality, has been shown by Scott in [14]. Later, Mortimer extended
this result to 2FO with equality [11]. More recently, Grädel, Kolaitis and Vardi
improved Mortimer’s result by lowering the complexity bound [5]. Finally, in [13]
Otto showed that the satisfiability problem for the two-variable first-order logic
interpreted over a linear ordering 2FO[<] can be decided in CO-NEXPTIME.

PNL can be translated into 2FO[<] as follows. Let us assume that for every
propositional variable p ∈ AP, there exists a corresponding binary relation
p(x, y) in 2FO[<]. The translation function STx,y, where x, y are two (free)
first-order variables, is defined by the following rules:

- STx,y(p) = p(x, y) ∧ x < y;
- STx,y(¬φ) = x < y ∧ ¬STx,y(φ);
- STx,y(φ ∨ ψ) = x < y ∧ (STx,y(φ) ∨ STx,y(ψ));
- STx,y(〈A〉φ) = x < y ∧ ∃xSTy,x(φ);
- STx,y(〈A〉φ) = x < y ∧ ∃ySTy,x(φ).

As we shall later point out, two variables are not sufficient to translate other
more expressive interval temporal logics, such as, for instance, HS and CDT.

Theorem 1 Given a PNL-formula φ, we have that φ is satisfiable if and only
if STx,y(φ) is satisfiable.

Proof.

We preliminary introduce a bijective mapping between interval models and
first-order interpretations for 2FO[<]. Let M = 〈D, V 〉 be an interval model.
The corresponding first-order interpretation I = η(M) is defined as follows:
(i) the domain 〈D′, <′〉 of I is any linearly ordered set such that there is an
isomorphism η : 〈D,<〉 7→ 〈D′, <′〉; (ii) the valuation of the relational symbols
p(x, y) in the language of 2FO[<] is such that p(d′i, d

′

j) holds if and only if
p ∈ V ([di, dj ]), where η(di) = d′i and η(dj) = d′j . For any PNL-formula φ, we
prove that M, [d0, d1] ° φ if and only if η(M), [x/η(d0), y/η(d1)] |= STx,y(φ).
The proof is by induction on the structural complexity of φ. The base case, as
well as the case of Boolean connectives, are straightforward, and thus omitted.
Let φ = 〈A〉ψ, and suppose that, for a given model M and interval [d0, d1],
M, [d0, d1] ° φ. By the semantics of PNL there exists an element d2 such
that d1 < d2 and M, [d1, d2] ° ψ. By the definition of STx,y, we have that
STx,y(〈A〉ψ) = x < y ∧ ∃xSTy,x(ψ). By definition of η, there exist three points
d′0, d

′

1, d
′

2 ∈ D′ such that d′0 = η(d0), d
′

1 = η(d1), d
′

2 = η(d2), and d
′

0 <
′ d′1 <

′ d′2.
By inductive hypothesis, we have that M, [d1, d2] ° ψ is true if and only if
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Figure 1: 2 vs. 3-variable characterization of interval logics (left), and interval
vs point-based logics (right).

η(M), [y/η(d1), x/η(d2)] |= STy,x(ψ). It immediately follows that M, [d0, d1] °
〈A〉ψ if and only if η(M), [x/η(d0), y/η(d1)] |= x < y ∧ ∃xSTy,x(ψ). The case φ
= 〈A〉ψ can be dealt with in a very similar way, and thus it is omitted.

Since the above translation is polynomial in the size of the input formula, we
have that the satisfiability problem for PNL, interpreted over the class of all
strict interval structures, is decidable in CO-NEXPTIME. Moreover, since PNL
is expressive enough to define discrete, dense, Dedekind complete, bounded, and
unbounded linear orderings [3], such a decidability result holds for these specific
classes of structures as well.

4 On the decidability of interval temporal logics

The problem of finding decidable interval temporal logics has been raised by
several authors, e.g., [6, 16]. As a matter of fact, in interval temporal logic
literature undecidability is the rule and decidability the exception. Interval log-
ics make it possible to express properties of pairs of time points, rather than
single time points and, in most cases, this feature prevents one from the possi-
bility of reducing interval-based temporal logics to point-based ones. However,
there are a few exceptions where the logic satisfies suitable syntactic and/or
semantic restrictions, and such a reduction can be defined, thus allowing one to
benefit from the good computational properties of point-based logics [8]. More
precisely, decidability has been achieved (i) by restricting the set of modalities,
(ii) by assuming suitable projection principles at the semantic level, or (iii) by
interpreting the logics over non fully-instantiated temporal structures. The first
approach has been successfully applied to the BB fragment of HS (as well as to
its past counterpart EE). BB is the fragment of HS that only features the begins
(〈B〉) and begun by (〈B〉) modalities. The decidability of BB can be obtained by
embedding it into the point-based temporal logic of linear time (LTL[F,P]) with
temporal modalities F (sometime in the future) and P (sometime in the past)
[4]. The second approach has been followed by Moszkowski in [12]. He tailored
a decidable fragment of PITL extended with quantification over propositional
variables (QPITL) by imposing a locality constraint stating that a propositional
variable is true over an interval if and only if it is true at its starting point. By
exploiting such a constraint, decidability of QPITL can be proved by embedding
it into quantified LTL. The latter approach achieves decidability by constraining



the classes of temporal structures over which the interval logic is interpreted.
This is the case with the so-called Split Logics (SLs) investigated by Montanari
et al. in [10]. SLs are propositional interval logics equipped with operators
borrowed from HS and CDT, but interpreted over specific structures, called
split structures. The distinctive feature of split structures is that every interval
can be ‘chopped’ in at most one way. The decidability of various SLs has been
proved by embedding them into the first-order fragments of monadic second-
order decidable theories of time granularity. The decidability result for PNL
given in this paper suggests a different classification of interval temporal logics
based on the number of variables needed to the translate them in first-order
logic: we have that PNL, BB, and EE are two-variable and thus decidable,
while, using Ehrenfeucht-Fräıssè games, it can be shown that the undecidable
logics HS, CDT, and BE are three-variable (see Figure 1, left).

5 PNL and point-based temporal logics

It is possible to compare the expressive power of PNL with that of point-based
temporal logics interpreted over the class of all linear orderings. In [15], Ven-
ema shows that HS (and thus CDT as well) is strictly more expressive than
any point-based temporal logic over the class of all linear orderings (by compar-
ing HS with SS’UU’, which is the most expressive point-based temporal logic).
We give a similar result for PNL (see Figure 1, right): PNL, which is strictly
less expressive than HS, is strictly more expressive than LTL[F,P]. First, it is
possible to show that PNL is at least as expressive as LTL[F,P] by providing a
satisfiability-preserving polynomial translation of LTL[F,P]-formulas into PNL.
According to this translation, a propositional variable holds at a time point d0

of a LTL[F,P]-model if and only if it holds over all intervals ending in d0 of the
corresponding PNL model. To prove that PNL is strictly more expressive than
LTL[F,P], we show that there exists at least one property of the underlying
frame (in the case of all linear orderings) that PNL is able to express, while
LTL[F,P], interpreted over the same class of linear orderings, is not. This prop-
erty is the following one: every point which has a successor has an immediate
one (Lemma 9.13, page 351). In [2] Gabbay et al. have shown that LTL[F,P]
cannot express it, while Goranko et al. have shown that it can be expressed
in PNL [3].
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[5] E. Grädel, P. G. Kolaitis, and M. Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[6] J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals.
Journal of the ACM, 38(4):935–962, 1991.

[7] K. Lodaya. Sharpening the undecidability of interval temporal logic. In
Proc. of 6th Asian Computing Science Conference, volume 1961 of LNCS,
pages 290–298. Springer, 2000.

[8] A. Montanari. Propositional interval temporal logics: Some promising
paths. In Proc. of the 12th International Symposium on Temporal Repre-
sentation and Reasoning (TIME), pages 201–203. IEEE Computer Society
Press, 2005.

[9] A. Montanari and G. Sciavicco. A decidable logic for time intervals: Propo-
sitional Neighborhood Logic. In F. Anger, G. Ligozat, and H. Guesgen,
editors, Proc. of the AAAI-2002 Workshop on Spatial and Temporal Rea-
soning, 2002.

[10] A. Montanari, G. Sciavicco, and N. Vitacolonna. Decidability of interval
temporal logics over split-frames via granularity. In Proc. the European
Conference on Logic in Artificial Intelligence 2002, volume 2424 of LNAI,
pages 259–270. Springer, 2002.

[11] M. Mortimer. On languages with two variables. Zeitschr. f. math. Logik u.
Grundlagen d. Math, (21):135–140, 1975.

[12] B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Department
of Computer Science, Stanford University, Technical Report STAN-CS-83-
970, Stanford, CA, 1983.

[13] M. Otto. Two variable first-order logic over ordered domains. Journal of
Symbolic Logic, 66(2):685–702, 2001.

[14] D. Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27:377–546, 1962.

[15] Y. Venema. Expressiveness and completeness of an interval tense logic.
Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.

[16] Y. Venema. A modal logic for chopping intervals. Journal of Logic and
Computation, 1(4):453–476, 1991.


