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Let Q be an arbitrary non-empty set, let O(n)p Q be a set of all n-ary operations on Q, and

OpQ =
n

O(n)p Q;

For every non-empty subset Σ ⊆ OpQ, the pair (Q; Σ) is called an algebra.
A bisemigroup is an algebra Q(·, ◦) equipped with two binary associative operations ·

and ◦. If both of these operations have an identity element, then the bisemigroup is called
a bimonoid. A commutative bisemigroup is a bisemigroup in which both operations are
commutative. A bisemilattice is a commutative bisemigroup in which both operations are
idempotent. In any bisemilattice Q(·, ◦), binary operations determine two partial orders
1 and 2. A bisemilattice is called a bilattice, if the partial orders 1 and 2 are lattice

orders. Since every lattice order is characterized by two binary operations, every bilattice is a
binary algebra with four operations and corresponding identities. A DeMorgan bisemigroup
([Brzo;00]) is an algebra Q(·, ◦,− , 0, 1) such that Q(·, ◦) is a bimonoid with identity elements
0 (for operation ·), 1 (for operation ◦) and such that identities

x = x,
x · y = x ◦ y,
x ◦ y = x · y,

x ◦ 0 = 0 ◦ x = 0,
x · 1 = 1 · x = 1

hold. A DeMorgan bisemigroup Q(·, ◦,− , 0, 1) is called a DeMorgan algebra ([Moi;35],
[Mark;50], [Bia-Ras;57], [Kal;58], [San;78]), ifQ(·, ◦) is a distributive lattice. The Lukasiewicz
3-valued logic L3 and the Kleene’s 3-valued logic K3 are DeMorgan algebras.

Every two element DeMorgan algebra is a Boolean algebra. We shall call an element a
of a given DeMorgan algebra a fixed point if a = a. A DeMorgan algebra with four elements
and two fixed points is uniquely determined up to isomorphism and will be denoted by 4. A
DeMorgan algebra with three elements is uniquely determined up to isomorphism and will
be denoted by 3.

In 1957, Bialynicki-Birula and Rasiowa characterized these lattices under the name
quasi-Boolean algebras ([Bia-Ras;57]). They showed that every quasi-Boolean algebra is
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isomorphic to a quasi-field of sets. On the characterization of DeMorgan algebras may be
seen also in [Brzo;01].

Let L be a bounded distributive lattice, Lop be the dual bounded distributive lattice of
L and L× Lop be their direct product. By equality

(x, y) = (y, x)

we convert the bounded distributive lattice L× Lop into a DeMorgan algebra. Every subal-
gebra of DeMorgan algebra L× Lop is also a DeMorgan algebra.
Theorem 1.1 Every DeMorgan algebra is isomorphic to a subalgebra of L × Lop for some
bounded distributive lattice L.

The next result is a characterization of DeMorgan algebras by fuzzy sets ([Gog;67]). Let
X be a non-empty set, let L(+, ·,− , 0, 1) be a DeMorgan algebra and let LX be the set of
all mappings X → L . The set LX converts to a DeMorgan algebra under the following
operations:

(f ∨ g)x = f(x) + g(x),
(f ∧ g)x = f(x) · g(x),

(f)x = f(x).

Theorem 1.2 Every DeMorgan algebra is isomorphic to a subalgebra of 4X for some set
X.

An algebra L(+, ·,− , 0, 1, a) with two binary, one unary and three nullary operations
is called a Kleene algebra, if L(+, ·,− , 0, 1) is a DeMorgan algebra satisfying a = a and
x+ x+ a = x+ x. Every Kleene algebra has only one fixed point a. DeMorgan algebra 3 is
a smallest Kleene algebra, hence 3X is a Kleene algebra as well for any set X.

Theorem 1.3 Every Kleene algebra is isomorphic to a subalgebra of 3X for some set X.

An algebra Q(·, ◦,− ,I , 0, 1) with two binary ,two unary and two nullary operations is
called a Boolean bisemigroup, if Q(·, ◦,− , 0, 1) is a DeMorgan algebra, Q(·, ◦,I , 0, 1) is a
Boolean algebra and unary operations are commute. Every Boolean algebra is a Boolean
bisemigroup with equal unary operations. DeMorgan algebra 4 is a Boolean bisemigroup as
well.

Let B be a Boolean algebra, Bop be the dual Boolean algebra of B and B ×Bop be
their direct product. By equality

(x, y) = (y, x)

we convert the Boolean algebraB×Bop into a Boolean bisemigroup. Hence every subalgebra
of Boolean bisemigroup B × Bop is also a Boolean bisemigroup. In particular, if B is
a Boolean algebra of all subsets of set I, then every subalgebra of Boolean bisemigroup
B×Bop is called a natural Boolean bisemigroup of set I.

Theorem 1.4 Every Boolean bisemigroup is isomorphic to a subalgebra of B×Bop for some
Boolean algebra B.

Theorem 1.5 Every Boolean bisemigroup is isomorphic to a natural Boolean bisemigroup
of some set I.

2



2

Let A = (Q; Σ) be an arbitrary algebra. n-ary term operations of algebra A are defined by
the following induction:

1) all n-ary identical operations (or projections) of set Q

δin(x1, . . . , xn) = xi, i = 1, . . . , n,

are n-ary term operations of A;
2) if f1, . . . , fm are n-ary term operations of A, then the superposition

µnm(f, f1, . . . , fm)(x1, . . . , xn) = f(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

is again an n-ary term operation of A, for every m-ary f ∈ Σ.
The operation h ∈ OpQ is called a term operation of A = (Q; Σ), if h is an n-

ary term operation of A for some n. For n = 1, 2, 3 the n-ary term operation is called
unary,binary,ternary.

If we denote the set of all n-ary term operations of algebra A = (Q; Σ) by Fn(Σ) and

F(Σ) = F1(Σ) F2(Σ) . . .

is the set of all its term operations, then algebra F(A) = (Q, F(Σ)) is called an algebra of
term operations (functions) for A (or a termal algebra for A).

Let’s consider the following binary associative multiplications ([Mann;44]):

f · g(x, y) = f(x, g(x, y)),
f ◦ g(x, y) = f(g(x, y), y).

If f and g are binary term operations of any algebra, then f(x, g(x, y)) and f(g(x, y), y)
are also binary term operations, hence for every f and g binary term operations there exist
binary term operations h and hI with identities:

f(x, g(x, y)) = h(x, y), (2.1)

f(g(x, y), y) = hI(x, y). (2.2)

So the set F2(Σ) of all binary term operations of any algebra A = (Q; Σ) is a bimonoid
of operations on Q.

The equations (2.1) and (2.2) have the meaning of ∀∃(∀)-identities in termal algebra.
The bimonoid F2(Σ) is called a bimonoid of binary term operations of algebra A =

(Q; Σ) (or bimonoid of algebra A in short).
Besides, the dual operation of every binary term operation is also a binary term op-

eration, i.e. for every binary term operation f there exists a binary term operation f ∗

with identity: f(x, y) = f ∗(y, x), and the mapping − : f → f ∗ is an antiautomorphism of
bimonoid F2(Σ).

So the set F2(Σ) of all binary term operations of any algebra A = (Q; Σ) is a DeMorgan
bisemigroup (of operations on Q) with an involution − : f → f ∗, and every commutative
binary term operation is a fixed point of this involution.
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1) If A = (Q; Σ) is a non-trivial lattice or a semilattice, then

F2(Σ) = Σ δ12, δ
2
2 .

For any binary term operations f, g of lattice or semilattice the following identities (hyperi-
dentities ([Mov;92]-[Mov;98]), [Tay;81]) are valid:

f(x, x) = x,

f(x, f(y, z)) = f(f(x, y), z),

f(f(x, y), f(u, v)) = f(f(x, u), f(y, v)),

f(g(f(x, y), z), g(y, z)) = g(f(x, y), z),

f(x, f(x, y)) = f(x, y),

f(f(x, y), y) = f(x, y),

f(x, g(x, y)) = g(x, f(x, y)),

f(g(x, y), y) = g(f(x, y), y),

f(x, f(g(x, y), y)) = f(x, y),

f(f(x, g(x, y)), y) = f(x, y).

Proposition 2.1 The bimonoid of binary term operations of any semilattice is a lattice of
order 3, hence this lattice is distributive and consequently is a Kleene algebra of order 3.

Proposition 2.2 The bimonoid of binary term operations of any non-trivial lattice is a
Boolean bisemigroup of order 4 (with two fixed points).

2) If A = Q(◦) is a non-commutative and idempotent semigroup, then

F2({◦}) = ◦, δ12, δ22, f1, f2, f3 ,

where
f1(x, y) = y ◦ x,
f2(x, y) = x ◦ y ◦ x,
f3(x, y) = y ◦ x ◦ y.

Theorem 2.3 The bimonoid of binary term operations of non-commutative and idempotent
semigroup is a distributive lattice of order 6, i.e. a DeMorgan algebra of order 6.
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