ON THE REPRESENTATIONS OF DeMORGAN ALGEBRAS

Yu.M.Movsisyan
Department of Mathematics, Yerevan State University, Alex Manoogian 1, Yerevan 375025, ARMENIA
E-mail address: yurimovsisyan@yahoo.com

1

Let Q be an arbitrary non-empty set, let $O_{p}^{(n)} Q$ be a set of all n-ary operations on Q, and

$$
O_{p} Q=\bigcup_{n} O_{p}^{(n)} Q
$$

For every non-empty subset $\Sigma \subseteq O_{p} Q$, the pair $(Q ; \Sigma)$ is called an algebra.
A bisemigroup is an algebra $Q(\cdot, \circ)$ equipped with two binary associative operations . and \circ. If both of these operations have an identity element, then the bisemigroup is called a bimonoid. A commutative bisemigroup is a bisemigroup in which both operations are commutative. A bisemilattice is a commutative bisemigroup in which both operations are idempotent. In any bisemilattice $Q(\cdot, \circ)$, binary operations determine two partial orders \leqslant_{1} and \leqslant_{2}. A bisemilattice is called a bilattice, if the partial orders \leqslant_{1} and \leqslant_{2} are lattice orders. Since every lattice order is characterized by two binary operations, every bilattice is a binary algebra with four operations and corresponding identities. A DeMorgan bisemigroup ([Brzo;00]) is an algebra $Q\left(\cdot, \circ,{ }^{-}, 0,1\right)$ such that $Q(\cdot, \circ)$ is a bimonoid with identity elements 0 (for operation \cdot), 1 (for operation \circ) and such that identities

$$
\begin{aligned}
& \overline{\bar{x}}=x, \\
& \overline{x \cdot y}=\bar{x} \circ \bar{y}, \\
& \overline{x \circ y}=\bar{x} \cdot \bar{y}, \\
& x \circ 0=0 \circ x=0, \\
& x \cdot 1=1 \cdot x=1
\end{aligned}
$$

hold. A DeMorgan bisemigroup $Q(\cdot, \circ,-, 0,1)$ is called a DeMorgan algebra ([Moi;35], [Mark;50], [Bia-Ras;57], [Kal;58], [San;78]), if $Q(\cdot, \circ)$ is a distributive lattice. The Lukasiewicz 3 -valued $\operatorname{logic} \mathbf{L}_{\mathbf{3}}$ and the Kleene's 3 -valued logic $\mathbf{K}_{\mathbf{3}}$ are DeMorgan algebras.

Every two element DeMorgan algebra is a Boolean algebra. We shall call an element a of a given DeMorgan algebra a fixed point if $\bar{a}=a$. A DeMorgan algebra with four elements and two fixed points is uniquely determined up to isomorphism and will be denoted by 4 . A DeMorgan algebra with three elements is uniquely determined up to isomorphism and will be denoted by 3 .

In 1957, Bialynicki-Birula and Rasiowa characterized these lattices under the name quasi-Boolean algebras ([Bia-Ras;57]). They showed that every quasi-Boolean algebra is
isomorphic to a quasi-field of sets. On the characterization of DeMorgan algebras may be seen also in [Brzo;01].

Let \mathfrak{L} be a bounded distributive lattice, $\mathfrak{L}^{\mathfrak{p p}}$ be the dual bounded distributive lattice of \mathfrak{L} and $\mathfrak{L} \times \mathfrak{L}^{\mathfrak{p p}}$ be their direct product. By equality

$$
\overline{(x, y)}=(y, x)
$$

we convert the bounded distributive lattice $\mathfrak{L} \times \mathfrak{L}^{\mathfrak{o p}}$ into a DeMorgan algebra. Every subalgebra of DeMorgan algebra $\mathfrak{L} \times \mathfrak{L}^{\mathfrak{p} p}$ is also a DeMorgan algebra.

Theorem 1.1 Every DeMorgan algebra is isomorphic to a subalgebra of $\mathfrak{L} \times \mathfrak{L}^{\mathfrak{o p}}$ for some bounded distributive lattice \mathfrak{L}.

The next result is a characterization of DeMorgan algebras by fuzzy sets ([Gog;67]). Let X be a non-empty set, let $L(+, \cdot,-, 0,1)$ be a DeMorgan algebra and let L^{X} be the set of all mappings $X \rightarrow L$. The set L^{X} converts to a DeMorgan algebra under the following operations:

$$
\begin{gathered}
(f \vee g) x=f(x)+g(x), \\
(f \wedge g) x=f(x) \cdot g(x), \\
\overline{(f)} x=\quad \overline{f(x)}
\end{gathered}
$$

Theorem 1.2 Every DeMorgan algebra is isomorphic to a subalgebra of 4^{X} for some set X.

An algebra $L(+, \cdot \cdot,-, 0,1, a)$ with two binary, one unary and three nullary operations is called a Kleene algebra, if $L\left(+, \cdot,{ }^{-}, 0,1\right)$ is a DeMorgan algebra satisfying $\bar{a}=a$ and $x+\bar{x}+a=x+\bar{x}$. Every Kleene algebra has only one fixed point a. DeMorgan algebra $\mathbf{3}$ is a smallest Kleene algebra, hence 3^{X} is a Kleene algebra as well for any set X.

Theorem 1.3 Every Kleene algebra is isomorphic to a subalgebra of $\mathbf{3}^{X}$ for some set X.
An algebra $Q\left(\cdot, \circ,,^{-},{ }^{\prime}, 0,1\right)$ with two binary ,two unary and two nullary operations is called a Boolean bisemigroup, if $Q(\cdot, \circ,-, 0,1)$ is a DeMorgan algebra, $Q\left(\cdot, \circ,{ }^{\prime}, 0,1\right)$ is a Boolean algebra and unary operations are commute. Every Boolean algebra is a Boolean bisemigroup with equal unary operations. DeMorgan algebra 4 is a Boolean bisemigroup as well.

Let \mathfrak{B} be a Boolean algebra, $\mathfrak{B}^{\mathfrak{p}}$ be the dual Boolean algebra of \mathfrak{B} and $\mathfrak{B} \times \mathfrak{B}^{\mathfrak{p} \boldsymbol{p}}$ be their direct product. By equality

$$
\overline{(x, y)}=(y, x)
$$

we convert the Boolean algebra $\mathfrak{B} \times \mathfrak{B}^{\mathfrak{p p}}$ into a Boolean bisemigroup. Hence every subalgebra of Boolean bisemigroup $\mathfrak{B} \times \mathfrak{B}^{\boldsymbol{o p}}$ is also a Boolean bisemigroup. In particular, if \mathfrak{B} is a Boolean algebra of all subsets of set I, then every subalgebra of Boolean bisemigroup $\mathfrak{B} \times \mathfrak{B}^{\mathfrak{p} \boldsymbol{p}}$ is called a natural Boolean bisemigroup of set I.

Theorem 1.4 Every Boolean bisemigroup is isomorphic to a subalgebra of $\mathfrak{B} \times \mathfrak{B}^{\mathfrak{p} \boldsymbol{p}}$ for some Boolean algebra \mathfrak{B}.

Theorem 1.5 Every Boolean bisemigroup is isomorphic to a natural Boolean bisemigroup of some set I.

2

Let $\mathfrak{A}=(Q ; \Sigma)$ be an arbitrary algebra. n-ary term operations of algebra \mathfrak{A} are defined by the following induction:

1) all n-ary identical operations (or projections) of set Q

$$
\delta_{n}^{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i}, \quad i=1, \ldots, n
$$

are n-ary term operations of \mathfrak{A};
2) if f_{1}, \ldots, f_{m} are n-ary term operations of \mathfrak{A}, then the superposition

$$
\mu_{m}^{n}\left(f, f_{1}, \ldots, f_{m}\right)\left(x_{1}, \ldots, x_{n}\right)=f\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

is again an n-ary term operation of \mathfrak{A}, for every m-ary $f \in \Sigma$.
The operation $h \in O_{p} Q$ is called a term operation of $\mathfrak{A}=(Q ; \Sigma)$, if h is an n ary term operation of \mathfrak{A} for some n. For $n=1,2,3$ the n-ary term operation is called unary,binary,ternary.

If we denote the set of all n-ary term operations of algebra $\mathfrak{A}=(Q ; \Sigma)$ by $\mathcal{F}^{n}(\Sigma)$ and

$$
\mathcal{F}(\Sigma)=\mathcal{F}^{1}(\Sigma) \bigcup \mathcal{F}^{2}(\Sigma) \bigcup \ldots
$$

is the set of all its term operations, then algebra $\mathcal{F}(\mathfrak{A})=(Q, \mathcal{F}(\Sigma))$ is called an algebra of term operations (functions) for \mathfrak{A} (or a termal algebra for \mathfrak{A}).

Let's consider the following binary associative multiplications ([Mann;44]):

$$
\begin{aligned}
& f \cdot g(x, y)=f(x, g(x, y)) \\
& f \circ g(x, y)=f(g(x, y), y)
\end{aligned}
$$

If f and g are binary term operations of any algebra, then $f(x, g(x, y))$ and $f(g(x, y), y)$ are also binary term operations, hence for every f and g binary term operations there exist binary term operations h and h^{\prime} with identities:

$$
\begin{align*}
& f(x, g(x, y))=h(x, y) \tag{2.1}\\
& f(g(x, y), y)=h^{\prime}(x, y) \tag{2.2}
\end{align*}
$$

So the set $\mathcal{F}^{2}(\Sigma)$ of all binary term operations of any algebra $\mathfrak{A}=(Q ; \Sigma)$ is a bimonoid of operations on Q.

The equations (2.1) and (2.2) have the meaning of $\forall \exists(\forall)$-identities in termal algebra.
The bimonoid $\mathcal{F}^{2}(\Sigma)$ is called a bimonoid of binary term operations of algebra $\mathfrak{A}=$ $(Q ; \Sigma)$ (or bimonoid of algebra \mathfrak{A} in short).

Besides, the dual operation of every binary term operation is also a binary term operation, i.e. for every binary term operation f there exists a binary term operation f^{*} with identity: $f(x, y)=f^{*}(y, x)$, and the mapping ${ }^{-}: f \rightarrow f^{*}$ is an antiautomorphism of bimonoid $\mathcal{F}^{2}(\Sigma)$.

So the set $\mathcal{F}^{2}(\Sigma)$ of all binary term operations of any algebra $\mathfrak{A}=(Q ; \Sigma)$ is a DeMorgan bisemigroup (of operations on Q) with an involution ${ }^{-}: f \rightarrow f^{*}$, and every commutative binary term operation is a fixed point of this involution.

1) If $\mathfrak{A}=(Q ; \Sigma)$ is a non-trivial lattice or a semilattice, then

$$
\mathcal{F}^{2}(\Sigma)=\Sigma \bigcup\left\{\delta_{2}^{1}, \delta_{2}^{2}\right\}
$$

For any binary term operations f, g of lattice or semilattice the following identities (hyperidentities ([Mov;92]-[Mov;98]), [Tay;81]) are valid:

$$
\begin{gathered}
f(x, x)=x, \\
f(x, f(y, z))=f(f(x, y), z), \\
f(f(x, y), f(u, v))=f(f(x, u), f(y, v)), \\
f(g(f(x, y), z), g(y, z))=g(f(x, y), z), \\
f(x, f(x, y))=f(x, y), \\
f(f(x, y), y)=f(x, y), \\
f(x, g(x, y))=g(x, f(x, y)), \\
f(g(x, y), y)=g(f(x, y), y), \\
f(x, f(g(x, y), y))=f(x, y), \\
f(f(x, g(x, y)), y)=f(x, y) .
\end{gathered}
$$

Proposition 2.1 The bimonoid of binary term operations of any semilattice is a lattice of order 3, hence this lattice is distributive and consequently is a Kleene algebra of order 3.

Proposition 2.2 The bimonoid of binary term operations of any non-trivial lattice is a Boolean bisemigroup of order 4 (with two fixed points).
2) If $\mathfrak{A}=Q(\circ)$ is a non-commutative and idempotent semigroup, then

$$
\mathcal{F}^{2}(\{\circ\})=\left\{\circ, \delta_{2}^{1}, \delta_{2}^{2}, f_{1}, f_{2}, f_{3}\right\},
$$

where

$$
\begin{aligned}
& f_{1}(x, y)=y \circ x, \\
& f_{2}(x, y)=x \circ y \circ x, \\
& f_{3}(x, y)=y \circ x \circ y .
\end{aligned}
$$

Theorem 2.3 The bimonoid of binary term operations of non-commutative and idempotent semigroup is a distributive lattice of order 6, i.e. a DeMorgan algebra of order 6.

References

[Bia-Ras;57] Bialynicki-Birula A., Rasiowa H., On the representation of quasi-Boolean algebras, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 5(1957),259-261.
[Brzo;00] Brzozowski J.A., De Morgan bisemilattices, in: The 30th IEEE International Sympozium on Multiple-Valued Logic (Portland, Oregon, May 2000), IEEE Press, Los Alamitos, California, 2000, 23-25.
[Brzo;01] Brzozowski J.A., A characterization of De Morgan algebras, Int. J. Algebra Comput., 11(5), 2001, 525-527.
[Gog;67] Goguen J.A., L-Fuzzy Sets, Jour. Math. Analysis and Appl.,18(1967), 145-174.
[Kal;58] Kalman J.A., Lattices with involution, Trans. Amer. Math. Soc. 87(1958), 485-491.
[Mann;44] Mann H.B., On orthogonal lattin squares, Bull. Amer. Math. Soc., 50(1944), 249-257.
[Mark;50] Markov A.A., Constructive logic, Usp. Mat. Nauk, 5(1950), 187.
[Moi;35] Moisil G. C., Recherches sur l'algebre de la logique, Annales scientifiques de l'universite de Jassy 22(1935),1-117.
[Mov;89] Movsisyan Yu.M., The multiplicative group of a field and hyperidentities, Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), 1040-1055. English transl. in Math. USSR Izv. 35(1990).
[Mov;92] Movsisyan Yu.M., Hyperidentities of Boolean algebras, Izv. Ross. Akad. Nauk., Ser. Mat. 56(1992), 654-672. English transl. in Russ. Acad. Sci. Izv. Math. 56(1992).
[Mov;96] Movsisyan Yu.M., Algebras with hyperidentities of the variety of Boolean algebras, Izv. Ross. Akad. Nauk., Ser. Mat. 60(1996), 127-168. English transl. in Russ. Acad. Sci. Izv. Math. 60(1996).
[Mov;98] Movsisyan Yu.M., Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk. 53(1998), 61-114. English transl. in Russ. Math. Surveys 53(1998).
[San;78] Sankappanavar H.P., A characterization of principal congruences of DeMorgan algebras and its applications, Math Logic in Latin America, Proc. IV Latin Amer.Symp.Math.Logic, Santiago, 1978, 341-349. North-Holland Pub. Co., Amsterdam, 1980.
[Tay;81] Taylor W., Hyperidentities and hypervarieties, Aequationes Math., 23(1981), 111127.

