Two Approaches to Automatic Recognition of Tabular Property in Superintuitionistic Logics

P.A. Schreiner^{*} N.V. Shilov J.V. Grebeneva

We present two experimental approaches to automatic recognition of (pre)tabular property of superintuitionistic logics.

Definition 1 A superintuitionistic logic has *tabular property*, if it can be characterized by a finite set of finite Kripke frames. A logic is said to be *pretabular* if it is maximal among non tabular logics.

A principle opportunity for automatization is based on theoretical results L.L. Maksimova [1] and their recent algorithmic interpretation [2]. The algorithmic interpretation is presented in brief below. The experimental approaches are PROLOG straightforward implementation of the algorithmic interpretation and a polynomial reduction to Boolean satisfiability. Our experiments have demonstrated efficiency and flexibility of the second approach.

For every $k \ge 1$ let lin_k be linear order with k elements, let fan_k be a partial order that consists of k incompatible elements and the least element, top_k – be a partial order that consists of k incompatible elements, the least element, and the greatest one.

Statement 1 Let A be a propositional formula and let L = Int + A the extension of intuitionistic logic Int by an extra axiom scheme A. Let N be the number of variables in A, r – be the number of instances of ' \rightarrow ' and ' \neg ' in A, and let $m = \min(2^N, r)$. Logic L = Int + A has a pretabular iff one of the following three conditions holds:

- 1. A is valid in $lin_{(N+1)}$, but fan_2 and top_2 both refute A.
- 2. A is valid in fan_m , but lin_3 refutes A.
- 3. A is valid in top_m , but fan_2 and lin_4 both refute A.

This statement implies that logic L = Int + A has tabular property iff three frames $lin_{(N+1)}$, fan_m , and top_m altogether refute A.

^{*}This work is supported by INTAS grant 04-77-7080.

References

- [1] Maksimova L.L. Pretabular superintuitionistic logics, Algebra and Logic 11, pp. 558–570, 1972.
- [2] Maksimova L.L., Schreiner P.A. The algorithms of the recognition of the tabularity and pretabularity in the extensions of the intuitionistic calculus, Vestnik of Novosibirsk State University, to appear.