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1. Introduction

The present paper applies Rauszer’s investigations on semi-Boolean algebras (SBAs) [6, 7, 8] to the
mathematical foundations of Rough Set Theory (RST) [9]. The foundations of RST can be approached
from several directions (e.g., [10]). Here, we use the theory of Galois connections [3, 12] to prove that the
operators of RST are ”only one half” of their respective SBAs. The ”second half” is given by operators
fundamental for another important theory of data analysis and knowledge discovery, namely Formal
Concept Analysis (FCA) [11]. However, the paper is confined only to ”metamathematics” of RST and
FCA, leaving aside a more general presentation of these theories. Moreover, the theory of SBAs allows
us to introduce the concept of R-rough set generalizing the Pawlak’s concept of rough set. We prove
that operators involved in the concept ofR-rough set provide a semantics for tense logic S4.t in the same
way, as the operators of RST provide a sematics for modal logic S5.

2. Semi-Boolean Algebras

In the present section we introduce the basic concepts of the theory of semi-Boolean algebras [6, 7, 8].

Definition 2.1. (Semi-Boolean algebra)
A semi-Boolean algebra (SBA) (U ,≤,∨,∧,

∧→,
∨→,>,⊥) is a Heyting algebra (U ,≤,∨,∧,

∧→,>,⊥)

equipped with the operation of pseudo-difference ∨→, that is:

a ∨ b ≥ c if and only if b ≥ a
∨→ c, for all a, b, c ∈ U

A detailed exposition of the properties of semi-Boolean algebras may be found in [7, 8]. The standard
method of producing SBAs is based on preorders (i.e. reflexive and transitive relations). There is a
bijective correspondence between preorders and Alexandroff topologies (i.e. topologies closed under
arbitrary intersections and arbitrary unions). Given an Alexandroff topological space (U , τ) we define a
preorder ≤, called the specialization order of (U , τ), as follows:

a ≤ b iff ∇b ⊆ ∇a, where ∇a = {b ∈ U : a ≤ b}

A preordered set S = (U ,≤) induces a topological space (U , τS), where sets ∇a, for all a ∈ U , form a
basis of τS . Rauszer defines two operations on members of τS :

A
∧→ B = {a ∈ U : (∀b ≥ a)(b ∈ A ⇒ b ∈ B)}



A
∨→ B = {a ∈ U : (∃b ≤ a)(b ∈ A & b 6∈ B)}

Proposition 2.1. (C. Rauszer)
Let S = (U ,≤) be a preordered set and (U , τS) its Alexandroff topological space, then the algebra

(τS ,⊆,∩,∪,
∧→,

∨→, ∅, G) is a SBA.

3. Galois connections

This section is concerned with mathematical foundations of Rough Set Theory (RST) [9] and Formal
Concept Analysis (FCA) [11]. The presentation of Galois connections is based on [3].

Definition 3.1. (Galois Connection)
Let (U ,≤) and (V,�) be partially ordered sets (posets). If π∗ : U → V and π∗ : V → U are functions
such that for all a ∈ U and b ∈ V , a ≤ π∗b iff π∗a � b, then the quadruple π = 〈(U ,≤), π∗, π∗, (V,�)〉
is called a Galois connection, where π∗ and π∗ are called the coadjoint and adjoint part of π, respectively.

Given two posets (PU ,⊆) and (PV,⊆), where PU is the power set of U , we may introduce two types
of Galois connections: a covariant Galois connection π (called axiality) between (PU ,⊆) and (PV,⊆),
and a contravariant Galois connection π (called polarity) between (PU ,⊆) and (PV,⊆)op = (PV,⊇).

Proposition 3.1. Any relation R ⊆ U × V induces a covariant Galois connection (axiality) R∃
∀ =

〈(PU ,⊆), R∃, R
∀, (PV,⊆)〉, where R∃ and R∀ are defined as follows: for any A ⊆ U and B ⊆ V ,

R∃(A) = {b ∈ V : (∃a ∈ U)〈a, b〉 ∈ R & a ∈ A}

R∀(B) = {a ∈ U : (∀b ∈ V)〈a, b〉 ∈ R ⇒ b ∈ B}

The theoretical dual of R∃
∀, defined as R∃

∀ = 〈R∃, R∀〉 = (R−1)∃
∀, is also an axiality but from (PV,⊆)

to (PU ,⊆). R−1 means the converse relation of R, that is, bR−1a iff aRb. Now, we recall basic concepts
of RST.

Definition 3.2. (Approximation Operators, Rough Sets)
Let U be a set, E an equivalence relation on U , and [a]E – the equivalence class containing a ∈ U . With
each A ⊆ U , we can associate its E-lower and E-upper approximations, A and A, respectively, defined
as follows:

A = {a ∈ U : [a]E ⊆ A} and A = {a ∈ U : [a]E ∩A 6= ∅}

A rough set is an equivalence class of sets which are indistinguishable by their upper and lower approx-
imations. A pair (U , E) is called approximation space. A subset A ⊆ U is called definable if A =

⋃
B

for some B ⊆ U/E, where U/E is the family of equivalence classes of E.

Each approximation space (U , E) may be converted into topological space (U , τE), where the family
U/E forms a basis of τE . In the literature topological spaces induced by equivalence relations are called
topological approximation spaces [5]. On this view, the lower approximation A is the interior of A ⊆ U
and the upper approximation A is the closure of A. A set A ⊆ U is definable only if A ∈ τE .



Proposition 3.2. (I. Düntsch and G. Gediga)
Let (U , τE) be a topological approximation space and A ⊆ U then:

E∀E∃(A) = A and E∃E∀(A) = A

This result – dressed differently – has been proved in [1, 2]. The direct relationship between Galois
connections and RST has been observed in [12]. Since SBAs are related to Alexandroff topological
spaces, we shall generalize this proposition.

Proposition 3.3. Let (U , τ) be an Alexandroff topological space, R its specialization order, I and C the
interior and closure operators induced by τ , respectively. Then

R∀R∃(A) = C(A) and R∃R∀(A) = I(A) for all A ⊆ U

This proposition shows that the approximation operators of RST, when interpreted on the basis of Alexan-
droff topological spaces, preserve their original topological meanings in terms of interior and closure op-
erators. However, the upper approximation may be indefinable. The solution to this problem is brought
by the concept of bitopological space.

Definition 3.3. (Bitopological Space)
A bitopological space (U , I, C) is a non-empty set equipped with an interior operation I and a closure
operation C satisfying:

I(A) = CI(A) and C(A) = IC(A), for all A ⊆ U

Please note that any toplogical approximation space (U , τ) gives rise to a bitopological space (U , I, C),
where both operators, I and C, are induced by τ . But in case of an Alexandroff topological space
S = (U , τ), the lower approximation operator R∃R∀ is ”only one half” of its bitopological space
(U , R∃R∀, C), since C – in generall – may be different from R∀R∃. It is clear that C returns τ -open
sets, i.e. definable sets, as it is required by RST. The same argument applies to the upper approximation
operator R∀R∃ and (U , I, R∀R∃). Now we find the ”second half” of RST.

Proposition 3.4. Any relation R ⊆ U × V induces a contravariant Galois connection (polarity) R+
+ =

〈(PU ,⊆), R+, R+, (PV,⊆)〉, where R+ and R+ are defined as follows: for any A ⊆ U and B ⊆ V ,

R+A = {b ∈ V : (∀a ∈ A)〈a, b〉 ∈ R}

R+B = {a ∈ U : (∀b ∈ B)〈a, b〉 ∈ R}

Below, we shall present FCA in a very concise way to give the reader at least a ”taste” of this theory. For
a detailed exposition of FCA see [11].

A triple 〈U ,V, R〉, where R ⊆ U × V , is called a context. Each context is associated with two
operators R+ and R+ called derivation operators. These operators allows one to build concepts, i.e.
meaningful entities which constitute our knowledge about the context.

Definition 3.4. (Concept)
A concept of a given context 〈U ,V, R〉 is a pair (A,B), where A ⊆ U and B ⊆ V such that A = R+B
and B = R+A.



The collection of all concepts of a given context is ordered by a subconcept-superconcept relation defined
as follows: (A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (equivalently, B1 ⊇ B2). The set of all concepts of a
given context 〈U ,V, R〉 together with the defined order ≤ is denoted by C〈U ,V, R〉 = {(A,B) : A =
R+B & B = R+A}. The fundamental theorem of FCA states that:

Proposition 3.5. (Wille)
For any formal context 〈U ,V, R〉, C〈U ,V, R〉 is a complete lattice, called the concept lattice of 〈U ,V, R〉,
for which infima (meet) and suprema (join) are respectively:∧

t∈T

(At, Bt) = (
⋂
t∈T

At, R+R+
⋃
t∈T

Bt) and
∨
t∈T

(At, Bt) = (R+R+

⋃
t∈T

At,
⋂
t∈T

Bt).

Basically, FCA deals with hierarichies (i.e. lattices) of concepts induced by contexts. Here, we are more
interested in derivation operators rather than concepts.

Proposition 3.6. Let (U , τ) be an Alexandroff topological space and R its specialization order, then
(U , R∃R∀, R

+R+) is a bitopological space.

Proposition 3.7. Let (U , τ) be an Alexandroff topological space and R its specialization order, then the
algebra (τ,⊆,∪,∩,

∧→,
∨→,U , ∅) is a SBA:

A
∧→ B = R∃R∀(−A ∪B)

A
∨→ B = R+R+(A ∩ −B)

for all A,B ∈ τ , where − is the set complement.

The same result may be obtained for the upper approximation operator R∀R∃. Its semi-Boolean coun-
terpart is given by the dual of R+R+, denoted by dualR+R+. It means that for A ⊆ U we have
dualR+R+(A) = −(R+R+(−A)).

Proposition 3.8. Let (U , τ) be an Alexandroff topological space and R its specialization order, then
(U , dualR+R+, R∀R∃) is a bitopological space.

Proposition 3.9. Let (U , τ) be an Alexandroff topological space and R its specialization order, then the
algebra (−τ,⊆,∪,∩,

∧→,
∨→,U , ∅) is a SBA:

A
∧→ B = dualR+R+(−A ∪B)

A
∨→ B = R∀R∃(A ∩ −B)

for all A,B ∈ −τ , where −τ = {A ⊆ U : −A ∈ τ}.

Let (U , τE) be an approximation topological space and let (U , I, C) be the induced bitopological space.
Then a rough set may be represented as (I(A), C(A)), for some A ⊆ U . In this context the proposition
3.6 suggests an easy generalization of rough sets by means of the induced bitopological space: a R-
rough set of an Alexandroff topological space (U , τ ) is as a pair os sets (R∃R∀(A), R+R+(A)), for
some A ⊆ U . Please note that both R-approximations of A, namely R∃R∀(A) and R+R+(A), are
definable in (U , τ).



Proposition 3.10. Let (U , τE) be a topological approximation space induced by an equivalence relation
E. Then, the set of rough sets induced by (U , τE) is equal to the set of R-rough sets induced by this
space.

This proposition demonstrates that R-rough sets are in fact generalized rough sets in the sense of RST.

4. R-Rough Sets and Rough Approximations

In this section we discuss the issues arising around RST and its logics. As has been observed by Marek
and Truszczyński [4], in most applications sets we want to reason about are not completely specified. In
consequence, their approximations may be not rough sets in the sense of Pawlak’s definition. In order
to cope with such situations, we need a concept much more flexible, than that of rough set, e.g., a rough
aproximation [4].

Definition 4.1. (Rough Approximations)
Let (U , E) be an approximation space and U/E be the family of equivalence classes of E, a pair (A,B)
of sets A 6= B is a rough approximation if A ⊆ B and both sets A and B are definable.

Proposition 4.1. (W. Marek, M. Truszczyński)
Let (U , E) be an approximation space and ≤ be the following order of its rough approximations:
(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 and B2 ⊆ B1, then rough sets are ≤-maximal rough approxima-
tions.

Now we generalize the concept of rough approximation for Alexandroff topological spaces. It is easy to
see that a rough approximation of an Alexandroff space (X, τ) is a pair (U, V ) of sets U 6= V such that
U ⊆ V and both sets are open.

Proposition 4.2. Let (U , τ) be an Alexandroff topological space and let ≤ be the order of its rough
approximations defined as in the proposition 4.1. Then, R-rough sets are ≤-maximal rough approxima-
tions.

Hence, R-rough sets are not merely one of the possible generalizations of rough sets. They are also
compatible with the ”surroundings” of RST. It is well known that Pawlak’s approximation operators
provide a semantics for modal logic S5. Below, we prove that R-approximation operators have their
own logical counterparts as well.

The Heyting-Brouwer sentential calculus (HBL) is formulated in the propositional language LHB

with connectives ∧,∨,
∧→,

∨→,>,⊥. Its axiomatization was delivered by C. Rauszer in [7].

Proposition 4.3. (C. Rauszer)
A formula of LHB is provable in HBL iff it is valid in all semi-Boolean algebras.

By the proposition 3.7 R-operators provide a semantics for HBL. We can ”copy” these operators from
the model of HBL to the language of tense logic S4.t by the extended Gödel translation. The key part is
defined as follows:

(α ∧→ β)t = �F (αt ∧→ βt)

(α ∨→ β)t = ♦P (αt ∧ ¬βt)



Definition 4.2. (R-Topological Model)
A R-topological model is a touple (U , τ, R, V ) where (U , τ) is an Alexandroff topological space, R its
specialization order and V the valuation function which assigns propositional letters subsets of U . V is
extended on Boolean connectives in the standard way, for modal operators the extension is as follows:

V (�F α) = R∃R∀(V (α)), V (♦F α) = R∀R∃(V (α))

V (�P α) = dualR+R+(V (α)), V (♦P α) = R+R+(V (α))

The definition of truth is as usual: a � α iff a ∈ V (α).

Proposition 4.4. A formula is provable in S4.t iff it is valid in all R-topological models.

As it has been demonstrated [13], a topological space S is indistinguishable from its finite approximation
by means of S4.t. Basically, the finite approximation of S represents our finite, or better still, incomplete
knowledge about the possibly infinite space S. Then, S4.t allows us to reason correctly about S, despite
the fact that our knowledge is incomplete. It is a very strong – yet approximate – logic, which fits
topology very well. It makes R-rough sets deserve the further scientific attention.
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